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A B S T R A C T   

Indoor Environment Quality (IEQ) holds significant importance in building design and operation, 
and the simulation of indoor environments playing a crucial role in enhancing IEQ. Although 
Computational Fluid Dynamics (CFD) has been widely employed for simulating building envi-
ronments, it is computationally demanding, particularly for large spaces. To tackle this challenge, 
we conducted a systematic evaluation of three surrogate models for accelerating CFD: Proper 
Orthogonal Decomposition (POD), Artificial Neural Networks (ANN), and a combined POD-ANN 
approach. Our evaluation criteria focused on assessing the model accuracy, the model size, 
computational time and extrapolation ability. A validated CFD case model and a real campus 
building are employed for model evaluation. The findings demonstrate that the top five modes 
can reconstruct the original data matrix accurately, and the POD-ANN significantly reduces model 
complexity and computation time by reducing the number of parameters in the neural network, 
the POD-ANN parameters is only 0.14 % of the ANN, and computation time is reduced by 63 %. In 
addition, the combination with ANN helps increase the extrapolation ability of POD significantly. 
In conclusion, this research proves that the POD-ANN can enhance the efficiency of CFD calcu-
lations with the advantages of both ANN and POD. By applying the POD-ANN to predict indoor 
temperature, we achieve faster predictions without compromising model accuracy, and an 
excellent extrapolation ability is achieved. This approach also reduces model complexity, high-
lighting its practical value for indoor environment prediction, particularly for large and 
complicated spaces.   

1. Introduction 

1.1. Background 

Individuals spend 90 % of their time indoors throughout their lives [1], making the indoor environments significantly impactful on 
human life. Improving Indoor environment quality (IEQ) has always been a key issue in building design and operation [2]. IEQ in-
cludes two important aspects: indoor air quality (IAQ) and thermal comfort. Research has shown that IAQ significantly impacts human 
health [3]. Poor indoor air quality can lead to various diseases such as airborne infectious diseases, allergies, asthma, and Sick Building 
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Syndrome [4]. IEQ can even affect productivity [5]. For example, changes in temperature and lighting cause potential alterations in 
workers’ physiological and psychological performance [6], which can lead to increased medical costs and sick leave [7]. In addition to 
enhancing the comfort and health of building occupants, reducing building energy consumption is another important subject in 
studying the indoor environment. The creation of IEQ is closely related to the overall energy consumption of a building [8]. How to 
reduce energy consumption while ensuring high IEQ is a critical issue. Given the complexity of the building environment and the 
unpredictability of indoor human behavior, this problem becomes particularly complex. 

Simulating the indoor environment is the first step to manage a high-quality indoor environment. An effective model can assist 
researchers in better understanding the state and potential changes of the built environment under various boundary conditions. 
Moreover, this process eliminates the need for extensive experiments and the installation of various sensors to measure IEQ param-
eters, thereby saving substantial human, time, equipment, and financial resources [9]. Accurate predictions can help anticipate 
changes in IEQ, enabling the preplanning of building equipment operation strategies, such as HVAC (Heating, Ventilation and Air 
Conditioning) systems in buildings. This facilitates better control over IEQ, providing a comfortable and healthy environment while 
reducing building operational energy usage. 

Among the simulation tools for IEQ, Computational Fluid Dynamics (CFD) is a powerful and widely used method. It has been 
utilized for decades in the indoor environment modeling and applied in various complex ventilation systems or buildings [10]. CFD can 
accurately simulates airflow [11], heat transfer [12], and particle diffusion [13]. Gilani et al. [14] conducted systematic study on the 
temperature stratification of room displacement ventilation using 3-dimensional steady Reynolds Averaged Navier-Stokes (RANS) CFD 
simulations. T. van Hooff et al. [15] used the same method for an in-depth investigation of CO2 concentration decay in a large 
semi-enclosed stadium after a concert. Beyond this, a wealth of valuable literature has been accumulated on research into IAQ [16–19] 
and natural ventilation [20–23] using CFD. From its inception to its widespread application today, the indispensability of the CFD in 
the IEQ field is evident, as also emphasized in literature reviews [24–26]. As summarized earlier, CFD is a high-fidelity modeling 
approach grounded in detailed physical principles, capable of successfully executing detailed predictions of various airflow and 
temperature distributions [27]. CFD is based on numerical analysis to solve fluid flow problems, involving solving partial differential 
equations (PDE) related to mass, momentum, energy, and turbulence [24]. CFD modeling typically involves the construction of a 3D 
model, mesh generation and computation. The solving process is based on the principles of momentum conservation, mass conser-
vation, and energy conservation to solve for the temporal and spatial variations of the fluid within each mesh cell. But this process 
consumes significant computational resources. With the optimization of software computation methodologies and the enhancement of 
hardware performance, the computational costs of CFD have become almost negligible compared to several decades ago, however, this 
computational load is still too large for control-oriented predictions. Real-time simulation is required in the control of many building 
systems, posing a substantial challenge for current CFD methods. 

1.2. Existing work 

For high computational demands and lengthy computation processes, surrogate models present an ideal solution. To address the 
issue of time-consuming CFD, various studies have proposed different surrogate model strategies, including data-driven approaches 
and reduced-order models [28]. One of the most representative methods in data-driven approaches is Artificial Neural Networks 
(ANN) [29], while the most prominent among reduced-order models is the Proper Orthogonal Decomposition (POD) [30]. 

1.2.1. ANN to accelerate CFD 
ANN is one of the most representative supervised learning algorithms in deep learning [29], endowed with powerful fitting ca-

pabilities that can approximate arbitrarily complex functional relationships. It also exhibits strong fault tolerance and robustness, as 
well as excellent extrapolation ability [31]. With the advancement of computer hardware, ANNs have become increasingly well-suited 
for handling large datasets and complex prediction tasks. At present, ANNs have been extensively applied in areas such as building 
energy consumption prediction [32], and optimization of HVAC systems [33]. In recent years, a growing number of researchers have 
focused on the application of ANN in the field of CFD. Calzolari et al. [34] conducted a literature review on the use of ANN in CFD 
simulations related to the built environment. They highlighted that the low computational cost of ANN can serve as a substitute for or 
an enhancement to the expensive CFD processes, enabling rapid predictions of indoor airflow. Moreover, CFD generates large volumes 
of data, providing an excellent data foundation for training ANNs. For instance, Zhou et al. [35] proposed a CFD surrogate model based 
on neural networks to predict indoor temperature and air flow speed. Under this method, the original CFD calculation process which 
took 8 h was compressed to 1.7 h, reducing the time by 80 %. In their other research [36,37], they compared the performance of 
different deep neural network models in indoor airflow prediction, and investigate other issues such as data preprocessing and 
weight-initialization methods of ANN-CFD surrogate models. However, purely data-driven methods like ANNs still have some issues. 
For instance, they are unable to understand the inherent physical knowledge in the learning data, and the need for extensive data 
training to achieve good model accuracy. 

1.2.2. POD to accelerate CFD 
POD, also known as Principal Component Analysis (PCA), is an effective modal analysis method that has been widely applied in 

fluid dynamics, mechanics, signal processing, control systems and deep learning. POD can extract meaningful patterns from high- 
dimensional fluid dynamics [38,39], thus implementing model reduction [40,41]. The application of the POD in flow field modal 
decomposition was first proposed by Lumley in 1970 [42]. After decades of development, it has been widely applied to various flow 
field problems [38]. Taira et al. [43] proposed a new immersed boundary method based on POD, whose structure is algebraically the 
same as the traditional fractional step method, used for calculating incompressible flow with prescribed surface motion. Sirovich et al. 
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[44] studied turbulence issues in flow fields based on the snapshot-POD. Furthermore, various complex flow field problems [39] such 
as cylinder wakes, wall-bounded flows, airfoil wakes, cavity flows, etc., have all been studied using POD. In recent years, scholars have 
extended the application of this method to other fields, such as building environments predictions. Li and colleagues [45–48] have 
applied the POD to the fast simulation of indoor thermal environments and CO2 concentration levels, integrating this approach with 
indoor environmental control algorithm strategies. The control method based on the POD surrogate model is characterized by its low 
computational cost and high spatial resolution. Building upon these studies, Luo et al. [49] have expanded the application of POD 
under more complex boundary conditions, enriching the research experience related to the prediction of indoor non-uniform envi-
ronments. It is important to note that the prediction tasks based on POD necessitates the use of additional methods to complete the 
prediction process. The most commonly used technique is interpolation [50] such as Radial Basis Function (RBF) [49]. 

1.2.3. Combination of POD and data driven methods 
Interpolation-based POD can achieve good predictive performance within a specific data range. However, this method has poor 

extrapolation capability because interpolation techniques are unable to predict data outside the known range. Compared to inter-
polation methods, ANNs, with their outstanding generalization capability, not only perform well on known data but also achieve 
accurate predictions for data outside the training set. Qiu and colleagues [51] have utilized a Kriging surrogate model to form a 
mapping between boundary conditions and POD bases, which has demonstrated superior performance in both subsonic and transonic 
flow field predictions, requiring less than 1/200 of the time taken by traditional CFD solvers. Jia et al. [52] employed an alternative 
Backpropagation Neural Network (BPNN) algorithm to conduct similar research, with findings indicating that BPNN can also achieve 
enhanced computational efficiency while maintaining high model accuracy. In the research conducted by Huang et al. [53], POD was 
also employed in conjunction with BPNN to predict structural wind loads. The method demonstrated precision and robustness that 
were significantly superior to those of the inverse square distance weighting (ISDW) method. 

1.3. Scope and objectives 

In previous studies, both POD and ANN have been extensively explored in the realm of predictive modeling for indoor environment 
applications. However, our literature review identified two research gaps. First, the research on integrated POD with ANN is still 
limited. Second, the systematic evaluation of different surrogate modeling approaches has not been studied. To address these research 
gaps, this study, originating from a room case that has been experimentally validated, evaluates the application of the POD, ANN, and 
the combination of POD and ANN for the rapid prediction of non-uniform indoor thermal environments with mechanical ventilation 
and internal heat sources. The comparison focuses on the model accuracy, computational efficiency, and generalizability. The 
remaining of this paper is organized as follows: we will first introduce the methodology we proposed in Section 2, including the 
workflow adopted in this paper. And the detail of the test case will be given in Section 3. Next, we will discuss the results in Section 4, 
including the results of three methods and the comparison of them. At last, we will present the conclusions in Section 5. 

2. Methodology 

This section introduced the three CFD surrogate models adopted in this research, including direct POD, direct ANN and combined 
POD-ANN. The methodological outline and workflow are referred to in Fig. 1. Notably, there are two ANN architectures adopted in this 
research, including direct ANN and POD-ANN, and the differences between them can be found in the figures the relevant sections. As 
depicted in Fig. 1, the three models employ the same dataset, which has been consistently partitioned into training, validation, and test 

Fig. 1. Methodology outline.  
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sets. Each data in the dataset represents the simulated outcomes under varying boundary conditions within the CFD model. 

2.1. POD surrogate model 

2.1.1. Theory 
The mathematical principle underlying POD is the orthogonal decomposition of a matrix, which allows the original matrix to be 

decomposed into eigenvalues and eigenvectors. In the modal decomposition of a flow field, each eigenvector can be regarded as a 
characteristic of the original flow field, while the eigenvalues represent the intensity of these characteristics. The eigenvalues typically 
decrease very rapidly, indicating that only the first few eigenvectors are usually sufficient to reconstruct the original flow field. There 
are typically three methodologies for applying POD [38]: Classical POD (also referred as Spatial POD), Snapshots POD, and Singular 
Value Decomposition (SVD). All three methods share a common principle: they decompose data matrices and extract the primary 
modes to reduce the dimensionality of the original data. Compared to the Classical POD, the Snapshots method can further reduce the 
necessary computational and memory resources, particularly well-suited for high-dimensional fluid flow, while the SVD based POD 
exhibits superior robustness when dealing with roundoff errors. In this study, the adopted method is SVD. As illustrated in Fig. 2(a), 
any matrix A ∈ Rm×n can be decomposed into the three matrices as 

A=USVT (1)  

where U ∈ Rm×m is an orthogonal matrix whose column vectors are the left singular vectors and form an orthogonal basis for the 
column space of the original matrix. S ∈ Rm×n is a diagonal matrix whose elements are singular values arranged in descending order, 
representing the square roots of the non-zero eigenvalues of ATA or AAT. V ∈ Rn×n is an orthogonal matrix whose column vectors are 
the right singular vectors and form an orthogonal basis for the row space of the original matrix. As depicted in Fig. 2(b), assuming that 
A =AnVT, where An =US, and An can be interpreted as stretching or scaling of the original matrix in the direction of the column space, 
while VT is the rotation or reflection in the direction of the row space. With these conclusions, VT can be considered a mode classifier, 
while An can be seen as a feature energy of the original data matrix. Then the top modes are selected for reconstructing the original 
matrix, as shown in Fig. 2(c). 

2.1.2. POD data training: decomposition 
The training of POD is illustrated in Fig. 3. The training dataset is denoted by a matrix U, where n represents the number of 

boundary conditions. The variable m denotes the size of the data, namely the mesh number in CFD model. Any row of U represents the 
temperature distribution data under each boundary condition, obtained by flattening the temperature data of all the mesh. Applying 
SVD to matrix U results in the amplitude matrix An and mode matrix VT. In this study, the selection of modes number mʹ depends on the 
feature retention capability of the leading modes for the training set matrix. The selection entails starting with the first-order mode and 
comparing the results of the reconstructed data with the original. The number of modes is gradually increased until the mean absolute 
error (MAE) between the original and reconstructed temperature distribution is small enough. 

Fig. 2. Theory of POD with SVD: a) Any given data matrix A can be decomposed by SVD, b) VT is the mode matrix, and U × S is the amplitude matrix, c) Select the top 
modes to represent the original data matrix A for the purpose of dimension reduction. 
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2.1.3. POD prediction: interpolation 
After the decomposition of the training set, the interpolation is implemented on A∗

n, and the amplitude matrix A∗ʹ
n of the test set is 

computed according to the interpolation. Then A∗ʹ
n is multiplied by VT∗ for prediction. RBF served as the interpolation method in this 

study. RBF is a scattered data interpolation technique that offers a smooth approximation based on the concept of distance for data 
points in multidimensional space. In RBF, for each point within the interpolation region, its function value can be approximated by a 
linear combination of radial basis functions of the surrounding known data points. For a set of scattered data 

(
xi,yi

)
,i = 1,2,…,N, the 

goal of RBF is to find a function f(x) such that f(xi) = yi for all data points, and f(x) is smooth throughout its entire domain. The form of 
f(x) is typically expressed as 

f(x)=
∑N

i=1
λiΦ(||x − xi||) (2)  

where Φ is the selected radial basis function, ||x − xi|| is the Euclidean distance of x and xi, λi is the undetermined coefficient. The radial 
basis function Φ(r) is a function of distance r that satisfies radial symmetry, meaning that the value of Φ(r) depends solely on the 
magnitude of r and is independent of direction. There are several commonly used radial basis functions, and the function adopted in 
this study is multiquadric function. 

Φ(r) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + c2

√
(3)  

where r the distance and c is a constant that can be adjusted according to the data. The determination of λi typically achieved by solving 
a system of linear equations formed by the interpolation conditions f(xi) = yi, which can be expressed as follows. 

⎡

⎣
Φ(||x1 − x1||) ⋯ Φ(||x1 − xN||)

⋮ ⋱ ⋮
Φ(||xN − x1||) ⋯ Φ(||xN − xN||)

⎤

⎦

⎡

⎣
λ1
⋮
λN

⎤

⎦=

⎡

⎣
y1
⋮
yN

⎤

⎦ (4) 

which can be solved sing standard linear algebra techniques such as LU decomposition, Gaussian elimination, or singular value 
decomposition (SVD). Once λ coefficients are determined, a new amplitude matrix y can be calculated for each set of new boundary 
conditions x through the function f(x). 

2.2. ANN surrogate model 

A typical feed-forward neural network consists of an input layer, multiple hidden layers, and an output layer, with neurons in each 
layer. These neurons connect the previous layer with the next one, forming a structure like the connections of neurons in the human 
brain. The connection method between each layer’s neurons involves the signal of a single neuron receiving the weighted sum of the 
data from each neuron in the previous layer and a bias term (optional), then feed the value into an activation function to provide the 
neuron output to the next layer. This can be represented as 

y= f

(
∑n

i=1
Wixi + b

)

(5)  

where Wi is the weight of the i-th neuron in the previous layer, b is the bias term, and f(x) is the activation function. Several activation 

Fig. 3. Decompose the training data matrix and select top mʹ modes, where mʹ < min (m, n).  
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functions are available, but nonlinear ones are typically used in complex prediction scenarios. Once the data has been transmitted to 
the output layer, one propagation is complete. To enhance the performance of the neural network, the error between the results and 
ground truth is calculated and then backpropagated to the input layer. The weights and bias from the previous propagation are 
adjusted and updated using a gradient descent algorithm. The hyperparameters of neural networks include the number of layers, the 
number of neurons in each layer, the activation function, and the gradient descent algorithm. The structure of the direct ANN is shown 
in Fig. 4. This neural network is trained directly through boundary conditions to predict temperature results. The inputs are the supply 
air temperature Tin, wall temperature Tw, and heat source temperature Th. Notably, the variables Tin, Tw, and Th are preprocessed 
before inputting into the neural network to mitigate the impact of the feature scale and enhance the model robustness. In this study, 
standardization is adopted as the preprocessing method and can be expressed as 

T∗ =
T − μT

σT
(6)  

where μT, σT represent the mean value and the standard deviations of the temperature data. The predicted temperature distribution is 
also preprocessed with the same process. 

In neural network training, hyperparameters notably affect the performance of the neural network and usually require experi-
mentation and search to determine. In this study, Optuna, an open source hyperparameter optimization framework, is used for 
optimization. The hyperparameters and their search range are shown in Table 1. 

2.3. POD-ANN surrogate model 

The workflow of POD-ANN is depicted in Fig. 5. Specifically, it involves establishing a neural network with an architecture similar 
to Fig. 4. In this neural network, the modal intensities matrix corresponding to the leading modes serves as the training target. Hence, 
the dimension of the output layer is mʹ according to the selected number of modes. Like the direct POD approach, the training of POD- 
ANN also encompasses the decomposition, and the neural network is employed to establish a mapping between the amplitude matrix 
VT∗ of the training set and the boundary conditions. Then use the trained neural network to predict the amplitude matrix of the new 
boundary conditions. Finally, multiply the results with the VT∗ to obtain the predicted temperature distribution. 

2.4. Model summary 

The inputs of the three surrogate models are the same, but the training processes and model outputs are different. Based on the 
predictive objectives of this study and the principles of these models, the key information for each model is organized as shown in 
Table 2. The inputs for models are combinations of boundary conditions, namely supply air temperature, heat source temperature, and 
wall temperature values. For direct ANN, the model forges a direct mapping between the boundary conditions and the temperature 
distribution, and the output is a one-dimensional array containing the temperatures in the room, each data point corresponding to a 
three-dimensional coordinate. For both the direct POD and POD-ANN models, the modal decomposition is required, then the 
amplitude matrix from the decomposition becomes the prediction target. The output is the amplitude matrix corresponding to each 

Fig. 4. Neural network architecture of direct ANN.  
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boundary condition. To obtain the predicted temperature, it is necessary to multiply the amplitude matrix by the selected modes. As 
can be inferred in Section 2.3, under the POD-ANN framework, the role of the neural network is to substitute the interpolation. Ac-
curate predictive outcomes can be achieved by harnessing the neural network’s potent regression capabilities. The construction, 
training, and prediction of the ANN model are all completed on a Windows desktop with an 11th generation Intel i5-11400F @ 2.60 
GHz CPU, which possesses a configuration of 6 cores and 12 threads, while the system is equipped with 16 GB of RAM. The pro-
gramming language used is Python, version 3.9, and the model is implemented using Keras, a widely used deep learning library. 

2.5. Performance evaluation criteria 

2.5.1. Model accuracy 
The evaluation of model accuracy includes the comparison of temperature heatmap and error statistical indicators include the 

Mean Absolute Error (MAE) and the Normalized Root Mean Squared Error (NRMSE), which are calculated as 

R2 =1 −

∑m
i=1

(
Tpred − TCFD

)2

∑m
i=1(TCFD − TCFD)

2 (7)  

MAE=
1
m
∑m

i=1

⃒
⃒Tpred − TCFD

⃒
⃒ (8)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1

(
Tpred − TCFD

)2

√

(9)  

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m
∑m

i=1

(
Tpred − TCFD

)2

√

TCFDmax − TCFDmin

(10)  

where Tpred is the predicted value, TCFD and TCFD are the CFD results and the average, TCFDmax is the maximum value of CFD results, while 
TCFDmin is the minimum. 

2.5.2. ANN architecture complexity 
Model complexity is critical for neural network models. Given equivalent predictive accuracy, models with lower complexity 

conserve more memory and hardware resources, thereby enhancing computational efficiency. In this research, the architectures and 
model hyperparameters of the two neural networks in direct ANN and POD-ANN will be compared. 

2.5.3. ANN computation time 
Discussions of computation time within this study are confined to the duration required for making predictions and exclude the 

time spent on data retrieval and the training process. This is because the training phase consumes substantially more time than 
prediction, and the optimization process with Optuna is stochastic, leading to significant variability in outcomes with each execution. 

2.5.4. Extrapolation ability 
The extrapolation capability of a model represents its prediction performance on an unknown dataset and is one of the key criteria 

for assessing a model’s prediction capacity. In this study, the extrapolation abilities of the three surrogate models are verified by 
partitioning the data into distinct training and testing sets. 

3. Test case 

3.1. CFD modeling and validation 

To ensure the reproducibility of this work, we use an open-source validated CFD model [54] as our case. The geometric structure of 

Table 1 
Hyperparameters optimization with Optuna.  

Hyperparameters   

Fixed Activation function ReLU 
Gradient descent algorithm Adam 
Batch size 1 
Training epochs 2000 
Number of neurons of input layer 3 
Number of neurons of output layer 4096 

To be optimized Number of hidden layers 1–5 
Number of neurons of each hidden layer 4–64 
Dropout rate 0.1–0.5 
Learning rate 0.00001–0.1  
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Fig. 5. Neural network architecture and workflow of POD-ANN.  
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the room model for this case, as shown in Fig. 6(a)–is a cubic laboratory equipped with an internal heat source and mechanical 
ventilation. The room size is 2.44 m ( × ) 2.44 m ( × ) 2.44 m and built with insulation materials. In the model room, a 1.22 m ( × ) 1.22 
m ( × ) 1.22 m cubic box represents furniture, with a heat source inside the box generating complex indoor airflow through heat 
dissipation to the air. The experiment assumes that all seats and occupants are concentrated within this box, using 16 light bulbs to 
produce a 700W heat source, equivalent to the sensible heat generated by 10.5 occupants. Four fans inside the box ensure uniform 
heating of the box’s surface. Under these conditions, the surface temperature of the box can be stabilized at 36.7 ◦C, which is com-
parable to human body temperature. The experiment includes three test cases to account for the complexity of flow field character-
istics. The first case is isothermal forced convection without a heat source, the second case involves the box without a heat source, and 
the third case places a 700W heat source inside the box. This study selects the most complex third test case to investigate the per-
formance of different surrogate models under complex flow field conditions. In the experiment, the ceiling temperature is 25.8 ◦C, the 
floor temperature 26.9 ◦C, and the temperature for the other walls is 27.4 ◦C. An air inlet, set at a height of 0.03 m and equal to the 
width of the wall, is installed close to the ceiling on one side to supply indoor ventilation. An outlet, with a height of 0.08 m and again 
equal to the wall’s width, is set close to the floor on the opposite wall to facilitate whole-room air circulation. The inlet temperature is 
22.2 ◦C with a wind speed of 1.36 m/s. They established a total of 512 measurement points in the laboratory to compare experimental 

Table 2 
Comparison of three surrogate models.   

Direct ANN Direct POD POD-ANN 

Inputs Temperature of supply air, heat source 
and walls 

Temperature of supply air, heat source 
and walls 

Temperature of supply air, heat source 
and walls 

Outputs Temperature data Amplitude matrix Amplitude matrix 
Prediction method Neural network regression Interpolation Neural network regression 
Need for 

reconstruction 
No Yes Yes  

Fig. 6. Brief introduction of the test case: (a) geometry and CFD meshing of the model room, (b) data points coordinate.  
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and simulation results. In their work, data points labeled as Point 1 to Point 10 are mentioned, as shown in Fig. 6(b), and they make 
public the test results for Point 1, 3, 5, and 6. 

Parameters of the CFD model are indicated in Table 3, the air is treated as incompressible ideal gas. The walls and heat source 
surfaces are specified as Dirichlet boundary conditions. The inlet is defined by velocity boundary conditions, allowing for the 
adjustment of supply air velocity and temperature. The outlet is set as a pressure boundary condition with the exit pressure set to 0. The 
RNG k− ε turbulent model is applied, and the Boussinesq approximation is utilized to address buoyancy effects. A second-order upwind 
scheme is employed for solving the control equations. The mesh size is 0.05 m and a total mesh number is 77,387. This study simplified 
the laboratory’s internal heat source in the CFD model by replacing the original 700W internal heat source with a cubic box that 
maintains a constant surface temperature of 36.7 ◦C. To validate the model, simulations are conducted using parameters consistent 
with the experiment in Ref. [54]. 

CFD simulations are executed using the widely adopted commercial software FLUENT, version 2022 b1, running on the same 
desktop mentioned in Section 2.4. The temperatures of the CFD result are presented along the Z-axis, from top to bottom, under 
different x and y coordinates at each data point. The validation is illustrated in Fig. 7. The square points in the image represent the 
measured temperature, while the dashed lines denote the CFD results. Both temperature data and Z-axis height in the figure are 
normalized. The vertical coordinate represents the ratio of the height to the total wall height (Z/L), while the horizontal coordinate is 
shown as 

T∗ =
T − Tlow

Thigh − Tlow
(11)  

where T, Tlow, Thigh represent the test temperature, the lowest temperature 22.2 ◦C and the highest temperature 36.7 ◦C. The figure 
shows that the deviation between the CFD simulation results and the experimental results is minimal, with the simulation closely 
matching the test data at most data points. The error metrics comparing CFD results with experimental tests are presented in Table 4. 
The table shows the results for MAE, RMSE, and NRMSE. Among the four data points, the highest MAE is 0.031, the highest RMSE is 
0.044, and the highest NRMSE does not exceed 14 %. The simulation results suggest that the CFD dataset used in this study can 
accurately represent the temperature distribution within a real building under the given geometric structure, thereby affirming the 
validity of this study. To alleviate computational cost, the results from the CFD simulations are dimensionality reduced. Specifically, 
the total number of nodes in the entire room, initially 77,387, is reduced to 4096 (16 × 16 × 16), which will not affect the accuracy of 
the model [35]. In subsequent research, comparisons between different surrogate models are all predicated on the results obtained 
from this CFD model. 

3.2. Boundary conditions definition 

The training and prediction of surrogate models require the preparation of a sufficient dataset in advance. The generation of dataset 
involves altering the boundary conditions of the CFD model each time to produce multiple sets of simulation results. The objective of 
this study is to predict the temperature field, without considering the distribution of velocity. Therefore, the supply air velocity is kept 
constant at 1.36 m/s under any boundary condition, and the heat source within the room represents the occupants heat dissipation, 
thus maintained at a fixed temperature of 36.7 ◦C. The adjustable boundary conditions are the supply air temperature and the wall 
temperature. The range should be large enough to ensure that each simulation result is as distinct as possible. In this study, the supply 
air temperature is assumed to range from 15 ◦C to 25 ◦C, while the wall temperature ranges from 10 ◦C to 30 ◦C. The sampling method 
employed is systematic sampling, which involves selecting samples at fixed intervals. Although different sampling methods can affect 
the training outcomes of the model, this issue is not discussed in this study. The sampling intervals for the supply air temperature and 
wall temperature are both set at 2.5 ◦C. Within the given ranges and sampling intervals, there are 45 boundary conditions in total. 

The database is divided into training, validation, and test set. The training set is for establishing the mapping between the input and 
output, the validation set is to validate the training results and adjust the model hyperparameter, which is necessary for reducing 
overfitting and underfitting, finally, the fitting ability of the model will be evaluated on the test set. Notably, direct POD model does not 

Table 3 
CFD model summary.  

Contents   

Geometry Room size 2.44 m ( × ) 2.44 m ( × ) 2.44 m 
Ventilation opening Inlet: 2.44 m ( × ) 0.03 m 

Outlet: 2.44 m ( × ) 0.08 m 
Heat source 1.22 m ( × ) 1.22 m ( × ) 1.22 m 

Mesh Size 0.05 m 
Number 77387 

Boundary conditions Wall temperature Ceiling: 298.8 K 
Floor: 299.9 K 
Other walls: 300.4 K 

Heat source temperature 309.7 K 
Supply air Temperature: 295.2 K 

Velocity: 1.36 m/s 
Turbulence model / RNG k− ε turbulent model 
Buoyancy effect / Boussinesq approximation  
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require validation set, as there is no hyperparameter adjustment for the interpolation, both training data and validation data are used 
for decomposition and modal selection. As shown in Fig. 8, 20 sets of data are designated as the training set, which includes all cases 
with wall temperatures of 10 ◦C, 15 ◦C, 25 ◦C, and 30 ◦C. Five sets are used as the validation set, including cases with a wall tem-
perature of 20 ◦C. The remaining 20 sets are used as the test set, encompassing cases with wall temperatures of 12.5 ◦C, 17.5 ◦C, 
22.5 ◦C, and 27.5 ◦C. 

4. Results and discussions 

4.1. Optimal modal selection for POD 

The MAE between reconstructed temperature and CFD results under different number of modes is shown Fig. 9. As the number of 
modes mʹ gradually increases from one, MAE decreases sharply at first and then slows down. When the modes number is greater than 4, 
the MAE value is already less than 0.2 ◦C and reduction is very small after that, indicating that the temperature distribution of POD 
results is very close to the CFD simulations. In this research, the modes selected for the reconstruction is 5.2D heatmaps of temperature 
distribution on the XY-plane at different heights are shown in Fig. 10. Since this study is targeted towards simulation and analysis of 
building thermal environments, the selection of representative z-axis heights adheres to the ASHRAE 55 [55], which states that when 
studying indoor thermal comfort for occupants in buildings, attention should be paid to the heights of 0.1 m, 0.6 m, 1.1 m, and 1.7 m, 
corresponding to the height of ankle, knee, and head for seated and standing person. As the height of heat source is 1.22 m, the 
temperature distributions of 0.1 m, 0.6 m and 1.1 m are similar, only the heights of 0.6 m and 1.7 m are displayed in Fig. 10. An 
example of Tin = 20◦C and Tw = 30◦C is adopted in the heatmap to show the temperature distribution at different heights. Fig. 10 
confirms the conclusion that when the number of modes is 5, the reconstructed temperature distribution is almost identical to the 

Fig. 7. CFD results validation.  

Table 4 
Error indicator of validation.   

Point 1 Point 3 Point 5 Point 6 

MAE 0.031 0.029 0.019 0.017 
RMSE 0.041 0.044 0.024 0.021 
NRMSE 14.0 % 14.0 % 8.6 % 7.1 %  

Fig. 8. Dataset partitioning: train, validation and test.  
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original image. 

4.2. Model performance 

4.2.1. Model accuracy 
The predictive accuracy of the three surrogate models for the test set is summarized in Table 5, where both MAE and NRMSE 

represent the average values across 20 test sets. Because the outcome of each run with the neural network may vary, the results for the 
direct ANN and POD-ANN are averaged over 10 executions. The metrics presented in Table 5 indicate that all three surrogate models 
exhibit a high level of predictive accuracy, with the average temperature discrepancy between the predictions and the CFD results 
being within 0.4 ◦C, and the NRMSE within 2.5 %. This demonstrates that, under the current standards for dividing the training, 
validation, and test sets, all three methods possess a robust capability for predicting the temperature field. Fig. 11 showcases the two- 

Fig. 9. Decrease of MAE with the increase of mode number.  

Fig. 10. Comparison of leading modes with original temperature field.  

Table 5 
Model accuracy of three methods.  

Criterion Direct POD Direct ANN (10 runs average) POD-ANN (10 runs average) 

R-square 0.99 0.99 0.98 
MAE 0.33 0.34 0.36 
RMSE 0.42 0.44 0.44 
NRMSE 2.3 % 2.5 % 2.5 %  
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dimensional temperature distribution under the conditions of Tin = 25◦C and Tw = 17.5◦C. The heatmaps illustrate that there is 
virtually no difference between the predicted outcomes of the three models and the results of the CFD simulations. 

4.2.2. Neural network complexity and computation time 
Table 6 shows the neural network architecture and average calculation time for both the POD-ANN and direct ANN. It can be 

observed from the table that the total parameters of the POD-ANN have significantly decreased. Compared to direct ANN, the order of 
magnitude of total parameters has dropped from hundreds of thousands to hundreds. Given that the case in this study is relatively 
simple, there is not a significant difference in the number of hidden layers and the number of neurons per hidden layer between the two 
methods. The reason for this significant decrease is that the number of neurons in the output layer of the neural network is not on the 
same order of magnitude: the output layer dimension in the direct ANN is 4096, while it is only 5 in the POD-ANN. As described in 
Section 2.2, the premise for a neural network to produce accurate prediction results is to form a complex mapping between inputs and 
outputs. This mapping is determined by parameters such as weights and biases propagated between the layers of the neural network. 
That is to say, the POD-ANN can produce predictions of the same accuracy with fewer weights and biases, thus ensuring model 
performance while reducing model complexity. Due to the reduced complexity of the model, the average computation time for 10 runs 
using the POD-ANN is only 3.65 s, as opposed to 9.88 s for the direct ANN, representing a significant reduction of 63 %. This reduction 
is considerable and is expected to become even more pronounced with the increasing complexity of building models and flow fields, 
leading to further reductions in computation time. 

4.2.3. Extrapolation ability 
In regression problems, it is often necessary for the training set to encompass the entire data range to effectively achieve perfect 

predictions, meaning that new boundary conditions should fall within the scope covered by the training set. In the previous data 
partitioning, the training set encompass the full data range, ensuring that the test set selections do not exceed the bounds of the training 
set. Conversely, if the training set selection fails to cover the complete data range, the model generalizability would be in doubt, 
because both machine learning model and RBF are good at interpolation, but poor at extrapolation [56]. When the training set is 
selected as Fig. 12, repeating the workflow described in Section 2 yields statistical errors for three methods, as shown in Table 7. When 
the training data is set as when the Tw range is 10–17.5 ◦C, validation data is when Tw is 20 ◦C and test data covers the rest, direct ANN 
and POD-ANN models still maintain relatively high accuracy, but direct POD model gives a disastrous result, which demonstrates that 
two models with ANN can maintain high extrapolation capability under these conditions. Based on these observations, it can be 
concluded that within the POD-ANN framework, the neural network endows POD with enhanced capabilities for flow field recon-
struction. This is attributed to the fact that the prediction of the amplitude matrix based on ANN exhibits greater robustness than the 
interpolation predictions derived from RBF. It demonstrates that the combination of POD with ANN outperforms the use of POD in 
isolation, thus indicating superior performance of the integrated approach. 

4.3. Testing on a real building model 

To further validate the predictive capabilities of these three surrogate models for large spatial building environments, this study 
constructed a 3D model of the same scale as the academic building at the Hong Kong University of Science and Technology, as 
illustrated in Fig. 13. The mesh number is 2040684. The building’s atrium features a vertical glass curtain wall and a 45-degree angled 
glass ceiling on the south side, with the remaining walls in bricks. Internal heat sources include an electronic screen on the western 

Fig. 11. Temperature distribution comparison of three methods.  

L. Zhao et al.                                                                                                                                                                                                           



Journal of Building Engineering 95 (2024) 110221

14

side. All air inlets in the figure have an area of 0.75 m2, with the atrium measuring 36.25 m in length, 16.7 m in width, with the south 
wall at a height of 10 m, and the north wall at 20 m. The model’s parameters and boundary conditions are detailed in Table 8, with the 
wind velocity of all air inlets being 0.8 m/s. The boundary conditions for the walls and ceiling in this model are assumed to be the same 
as those in Section 3, adhering to the first type of boundary conditions, i.e., fixed temperatures. In buildings with significant window- 
to-wall ratios, solar radiation typically exerts a substantial impact on the interior temperature. Therefore, in this model, the variables 
are the temperatures of the glass wall and glass ceiling, as well as the supply air temperature at the air inlets. 

In accordance with the varying temperature ranges for the glass wall, glass ceiling and supply air, a total of 9 distinct combinations 
of boundary conditions are generated. Of these, four of them are designated for the training set, one for the validation set, and the rest 
for the test set, as depicted in Fig. 14. 

The temperature distribution of the building is predicted using the direct POD, direct ANN, and POD-ANN, respectively (see 
Fig. 15). The performance of these three surrogate models is presented in Table 9. From the table, it is evident that all three models 
exhibit a high level of prediction accuracy, with the direct ANN and POD-ANN demonstrating superior accuracy compared to the direct 
POD. Fig. 14 displays a comparison between the POD-ANN model predictions and the CFD results under conditions where the supply 
air temperature is 15 ◦C and the glass temperature is 50 ◦C. By examining the YZ cross-sections at X = 6.5 m and X = 7.5 m, it is 
apparent that the model is capable of accurately predicting the temperature distribution. Due to the temperature difference between 
the upper and lower regions, a clear stratification of temperature distribution is observed, and the surrogate models successfully 
reproduce this characteristic of the flow field. The models also effectively capture the distribution information of the air vent tem-
peratures at the two positions, X = 6.5 m and X = 7.5 m, where air vents are present and absent, respectively. 

5. Conclusion 

The present study undertakes a comparative examination of three surrogate modeling techniques to accelerate CFD calculation 
under the context of simulating indoor environments. The surrogate models under scrutiny include the POD, the ANN approach, and 
the hybrid POD-ANN. Two distinct scenarios are considered for the comparative analysis: a validated CFD model case sourced from 
open literature and a real-world case involving the ground floor of a campus building. The primary performance indicators of interest 
encompass prediction accuracy, model complexity, computational time, and model generalizability given new boundary conditions. 

Table 6 
Model complexity and calculation time of direct ANN and POD-ANN.  

Hyper-parameters Direct ANN POD-ANN 

Number of hidden layers 3 1 
Number of neurons of each hidden layer 38, 24, 62 40 
Dropout rate 0.15, 0.26, 0.49 0.14 
Learning rate 0.016 0.019 
Total parameters 260282 365 
Calculation time 9.88s 3.65s  

Fig. 12. Dataset partitioning: same size of training and validation set without covering the whole data range.  

Table 7 
Model accuracy of three models under new training set.  

Criterion Direct POD Direct ANN (10 runs average) POD-ANN (10 runs average) 

R-square − 2.86 0.95 0.93 
MAE 5.55 0.72 0.74 
RMSE 6.17 1.04 1.10 
NRMSE 38.4 % 5.9 % 6.2 %  
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The key findings are summarized as follows:  

(1) The leading modes extracted from the POD analysis of the training set accurately reproduce the flow field, indicating that only a 
few dominant modes are sufficient to represent the original flow field. Discarding the subsequent modes has negligible impact 
on information loss. 

Fig. 13. Academic building in HKUST: a) 3D model of the whole building, b) Academic corridor (atrium).  
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(2) The POD-ANN significantly reduces the model complexity compared to using ANN directly. The scale of the neural network 
model parameters is merely about 1 % of the latter, demonstrating its exceptional lightweight nature, which could significantly 
reduce the computational resources (memory and computational time) required for indoor environment prediction, the 
calculation time for each run can be reduced by 63 %.  

(3) The selection of training set data strongly influences the performance of these surrogate models. Increasing the quantity of 
training sets does not necessarily improve prediction accuracy. However, when utilizing the same number of training sets, the 
coverage of the entire data space within the training set leads to markedly different result.  

(4) In comparison to traditional POD interpolation methods such as RBF, the application of ANN for the prediction of POD results 
exhibits enhanced extrapolation capabilities.  

(5) The surrogate models examined in this article are engaged in a process of feature extraction and learning from CFD results 
before making predictions. It is clear from the principles of both POD and ANN that these surrogate models still possess certain 
limitations. The accuracy of the POD largely depends on the number of modes selected and the interpolation method used. On 
the other hand, ANN is a purely data-driven approach which lacks the capability to learn the physical knowledge inherent in 
fluid dynamics. 

The current study has the following two limitations. First, the transferability of the method still needs further validation. Second, 
the focus of this study is on steady-state environmental conditions in building temperature distribution. However, POD will have more 
advantages in dynamic simulation theoretically. That is, the extracted flow field modes should be time dependent. This concept can be 
represented in Fig. 6 as the replacement of boundary conditions with timesteps. It is worth noting that while time series have an order, 
combinations of boundary conditions do not. Therefore, an important premise for this equivalence is that, according to the properties 
of matrices, swapping any two rows of a matrix does not change the result of the matrix’s SVD decomposition. That is, shuffling the 
time series can also yield the same temporal modes. 

Overall, these findings highlight the effectiveness of the POD-ANN surrogate model for rapid indoor environment prediction and 
emphasize the importance of careful training set selection in achieving accurate results. Furthermore, our study demonstrates the 
broad applicability of the POD-ANN under the context of built environment simulation. 

The entire data, code and models are shared in Github (Link: https://github.com/LigeZhao/CFD-surrogate-models). 
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Table 8 
CFD model summary of HKUST academic building.  

Contents   

Invariable Wall temperature Ceiling wall: 303 K 
Floor: 293 K 
Screen: 303 K 

Variable Glass wall & glass ceiling temperature 303 K–323 K, at intervals of 10 K  
Supply air temperature 283 K–293 K, at intervals of 5 K  

Fig. 14. Dataset for HKUST academic building.  
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Fig. 15. Prediction of POD-ANN and CFD results: a) X = 6.5 m, b) X = 7.5 m  
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