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A B S T R A C T

Semi-empirical satellite method is widely used in estimating global horizontal irradiance (GHI), where various
clear-sky models, cloud index (CI) and clear-sky index (CSI) derivation methods are available. This study aims
to optimize the semi-empirical satellite model for 5-minute GHI estimation from four aspects: satellite-bands, CI
and CSI derivation methods, and clear-sky models. The results show that it achieves better GHI estimates using
the blue band, CI derived from monthly fixed upper and lower bounds, and a piecewise CI-to-CSI function.
There is no significant difference in all-sky GHI estimation for the clear-sky models regarding normalized
root mean squared error (nRMSE, 25.19%–25.53%), which is comparable with the referenced physical model.
Clouds cause the largest uncertainty, where the nRMSE is in the range of 37.60%–38.36% in cloudy days and
31.12%–31.54% in cloudy periods. In the application of semi-empirical method with different clear-sky models,
Ineichen–Perez has the highest bias of -4.62% in clear days and -3.93% in cloudless periods. REST2 outperforms
McClear with slightly lower nRMSE and normalized mean bias error (nMBE) under all sky conditions. McClear
is recommended due to its global availability. Modified Ineichen–Perez produces the lowest nRMSE and nMBE
using clear-sky GHI as the GHI estimates for clear periods, therefore has the potential for improvements in
physical methods.
1. Introduction

Solar radiation is a significant source of renewable energy systems,
which can be directly captured to produce heat and electricity. It is
reported that solar thermal technologies produced 479 TWh energy in
2019, which is an equivalent energy savings of 43 million tons of oil
and 130 million tons emissions of CO2 (Murphy, 2021). Meanwhile,
solar photovoltaic (PV) has also been one of the most promising re-
newable energy technologies in recent years with an estimated average
yearly growth of 15% between 2019 and 2030 (IEA, 2020). However,
the power output of a solar energy system is highly variable due to
the intermittent and uncertainty of local irradiance conditions (Inman
et al., 2013; Chu et al., 2016; Li et al., 2016; Chu et al., 2021). The
variability in power production also introduces difficulties in system
operation (Chu et al., 2013). Considering the rapid expansion of solar
energy conversion applications, it is important to have reliable and ac-
curate ground solar irradiance data at the location of interest. Historical
data is essential for the feasibility and optimal system design phases of
a solar power conversion project to support decision making and reduce
the risk (Kleissl, 2013).

∗ Corresponding author at: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
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Ground-based measurement is the most reliable irradiance data
source for solar energy applications. However, due to difficulties in
routine calibration, data quality control, as well as the high cost asso-
ciated with the instrumentation, complete and long-term ground-based
measurements are scarce (Yagli et al., 2020). Therefore, solar irradiance
estimation and reanalysis from satellite offer an alternative to the
ground measurements for evaluating and designing the solar energy
projects (Ayompe and Duffy, 2014). Despite the general belief that solar
irradiance data based on satellite observation and model reanalysis is
less accurate than ground-based measurements, satellite-derived solar
irradiance data can help with model development (Yagli et al., 2020).

As an essential part for solar irradiance modeling, geostationary
satellites are widely used for resource monitoring and assessment as
they observe continuously the same part of the Earth (Kleissl, 2013).
The advancement in modern remote sensing technique brings data
in finer temporal and spatial resolutions as well as new insights in
solar irradiance modeling. Satellite-based solar irradiance models can
be broadly classified as physical, empirical, and semi-empirical meth-
ods (Kleissl, 2013). Physical methods usually apply radiative transfer
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models (RTMs) through different layers in the atmosphere, which
requires detailed and accurate information of the atmospheric con-
stituents, such as cloud optical properties, aerosol optical depth (AOD),
and water vapor content (Kleissl, 2013). Pure empirical models attempt
to simulate the regression between the satellite measurements and
ground based records (Kleissl, 2013). While semi-empirical models are
a combination of physical and empirical method, which apply a simple
RTM and regression approach to fit the observations (Kleissl, 2013).

Many studies have been conducted to estimate the global horizontal
irradiance (GHI) from geostationary satellites images (Sengupta et al.,
2018; Qu et al., 2017; Hammer et al., 2003; Garniwa et al., 2021). Both
physical and semi-empirical models are extensively used in estimating
GHI while simple empirical methods are barely applied due to their
inferior performance caused by the lack of generality (Garniwa et al.,
2021; Laguarda et al., 2020). Physical models usually have better
performance than semi-empirical methods (Garniwa et al., 2021), as
they technically need the details of atmospheric compositions. For in-
stance, the national solar radiation database (NSRDB) (Sengupta et al.,
2018), as a widely accessed and publicly available data source, provides
broadband irradiance and other auxiliary variables. NSRDB is produced
using the physical solar model (PSM) and products from a number
of associations (Sengupta et al., 2018). The Heliosat−4 method (Qu
et al., 2017) is also a fully physical model using a fast, approximated,
but still accurate RTM approach. Heliosat−4 consists of two models
based on libRadtran (Mayer and Kylling, 2005) and look-up tables: the
McClear (Lefèvre et al., 2013) for solar irradiance under cloud free
conditions and the McCloud for irradiance attenuation due to clouds.
However, apart from the complexity and high computing resource
requirement, the essential inputs of physical models, such as water
vapor, AOD, and cloud properties are difficult to obtain and generally
associated with uncertainties (Kleissl, 2013; Zhong and Kleissl, 2015;
Larson et al., 2020).

On the other hand, semi-empirical methods typically deal with the
irradiance attenuation of atmospheric constituents and cloud extinc-
tion separately, with a clear-sky model for clear-sky irradiance and
a cloud index (CI) derived from satellite image to account for cloud
attenuation (Kleissl, 2013; Hammer et al., 2003). Heliosat method
series (Beyer et al., 1996; Rigollier et al., 2004; Mueller et al., 2004) are
examples of semi-empirical models, which offer easy implementation,
fast calculation and operation (Garniwa et al., 2021). Many clear-sky
models have been used in semi-empirical models for GHI estimation,
such as the Ineichen–Perez model (Ineichen and Perez, 2002) in the
operational model (SUNY model) developed by Perez et al. (2002), the
McClear model in the work of Jia et al. (2021), and the REST2 (Guey-
mard, 2008) model in Solcast (Solcast, 2021). There are also different
methods proposed to calculate the GHI based on clear-sky index (CSI)
and CI in the literature (Hammer et al., 2003; Perez et al., 2002;
Mueller et al., 2012).

Given that a variety of clear-sky models are available for estimat-
ing GHI in semi-empirical satellite models with different regressions
between CSI and CI, there has been a dearth of study to compare the
performance of different clear-sky models and empirical relationships
for GHI estimation. Some related studies from the literature are summa-
rized as follows, Rigollier and Wald (1999b) compared several clear-sky
models developed at the early stages and selected the ESRA (Rigollier
et al., 2000) model for the HelioClim project (Rigollier and Wald,
1999a), which was later replaced by McClear for improvements (Qu
et al., 2014). Laguarda et al. (2020) applied the ESRA and McClear
model in hourly GHI estimation over the Pampa Húmeda with different
locally adjusted CI methods. McClear model performs better than ESRA
model under clear-sky conditions, and both ESRA and McClear models
have small negative biases of −1.1% for all-sky GHI estimates while
McClear yields a slightly lower relative root mean square deviation
(rRMSD, 12.5% versus 12.1%). Garniwa et al. (2021) analyzed the
performance of different semi-empirical models for hourly GHI esti-
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mation in Korea and found the Hammer model presented in Hammer
et al. (2003) has a better result. Meanwhile, a hybrid model was
also proposed with smaller root mean square error (RMSE) than the
Hammer model (97.08 W m−2 versus 103.92 W m−2). However, limited
studies have been conducted to compare and evaluate the performance
of different clear-sky models, CI and CSI derivation methods in so-
lar resourcing. Considering the advanced clear-sky models have been
developed with high performance and much finer resolution of the
data (e.g., 5 min images) provided by modern satellites, it would
be of interest to compare and evaluate the methods and clear-sky
models used in semi-empirical model for GHI estimation with a fine
spatiotemporal resolution (i.e., 5 min and 1 km).

This study aims to optimize the semi-empirical satellite model for
5 min GHI estimation via comparing and evaluating the performance
of different clear-sky models, CI and CSI derivation methods, and
satellite bands. Ineichen–Perez, McClear, and REST2 are compared as
the representatives of average, good and best clear-sky models to keep
the generality (Yang, 2020). The main contributions of this work are
summarized as follows:

• Evaluates the performance of 5 min all-sky GHI estimate based on
different bands of GOES-16 and different empirical relationships
between CSI and CI.

• Compares different methods to derive the CI based on GOES-
16 data for 5 min GHI estimation, in particular, the used time
window, determinations of upper and lower bounds.

• Introduces the modified Ineichen–Perez clear-sky model based on
estimated turbidity from local meteorological
measurements (Chen and Li, 2022) in all-sky GHI estimation.

• Compares and evaluates the four aforementioned clear-sky mod-
els for estimating 5 min GHI using semi-empirical methods under
different sky conditions.

The remainder of this work is structured as follows: Section 2
describes the used data, semi-empirical GHI estimation method, and the
details of the compared clear-sky models. The performance of different
CI, CSI calculation methods, and different clear-sky models for GHI
estimation and discussions are presented in Section 3. Finally, the
key findings of this study and recommendations are summarized in
Section 4.

2. Data and methods

This section describes the used data and the semi-empirical satellite
method for GHI estimation. The satellite data will first undergo a
radiance conversion to eliminate the negative points, then the CI and
CSI are determined using different strategies and methods that are
described in Section 2.2. Finally, the GHI is calculated via the CSI and
clear-sky GHI (GHIcs) from the clear-sky model as shown in Fig. 1.
Four clear-sky models are compared, the GHIcs of REST2 and McClear
are publicly available, Ineichen–Perez documented in PVLIB (Holmgren
et al., 2018) adopts the default calculations, while Ineichen–Perez
TL model uses the estimated turbidity based on local meteorological
measurements (Chen and Li, 2022). The detailed method for estimating
turbidity is presented in Section 2.3.

2.1. Data

The satellite data used in this work is from GOES-16, operated by
National Oceanic and Atmospheric Administration (NOAA). GOES-16
has 16 spectral bands, the Advanced Baseline Imager (ABI) provides
data with temporal resolution of 5–15 min, and spatial resolution of
0.5–2 km at the sub-satellite point (Schmit et al., 2018). In this study,
the data from two visible bands (blue, red) and one near-infrared
band (veggie) in the year of 2019 are retrieved from publicly available
sources and then georeferenced to the ground location of interest, the
detailed information about the aforementioned bands is presented in

Table 1. There are three UTC (Universal Time Coordinated) timestamps
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Fig. 1. The flowchart of GHI estimation using semi-empirical methods with different clear-sky models.
Table 1
Summary of the blue, red, veggie bands of GOES-16. All the information is obtained from the GOES-R Series Product
Definition and User’s Guide (PUG) (goe, 2019).

Band No. Type Center wavelength
(Range) [μm]

Resolution
[km]

Valid rangea Scale factor Add offset

1 (Blue) Visible 0.47 (0.450–0.490) 1.0 0–1022 0.8121 −25.9366
2 (Red) Visible 0.64 (0.590–0.690) 0.5 0–4094 0.1586 −20.2899
3 (Veggie) Near-Infrared 0.87 (0.846–0.885) 1.0 0–1022 0.3769 −12.0376

aValid range is in packed and scaled integer form. Scale factor and add offset are used to convert scaled integer to
physical quantity, which is radiance [W m−2 sr−1 μm−1] in this case.
Table 2
Summary of the seven SURFRAD stations.

Station Latitude (◦) Longitude (◦) Altitude (m) Timezone Snow-free period

BON 40.05 −88.37 230 UTC-6 2019-04-01–2019-10-31
DRA 36.62 −116.02 1007 UTC-8 2019-01-01–2019-12-31
FPK 48.31 −105.10 634 UTC-7 2019-05-03–2019-09-30
GWN 34.25 −89.87 98 UTC-6 2019-01-01–2019-12-31
PSU 40.72 −77.93 376 UTC-5 2019-04-01–2019-10-31
SXF 43.73 −96.62 473 UTC-6 2019-05-01–2019-09-30
TBL 40.12 −105.24 1689 UTC-7 2019-05-02–2019-09-30
referring the time of file creation, start and end of the scan. To be
compatible with ground measurements and real-time applications, the
end timestamp is applied to index the data after rounded to the next
nearest 5 min interval.

The corresponding ground irradiance measurements are from the
stations in Surface Radiation Budget Network (SURFRAD) (Augustine
et al., 2000). Detailed information of the seven stations are summarized
in Table 2. The initial dataset includes a variety of 1-minute averaged
solar irradiance as well as meteorological information. Ambient air
temperature, relative humidity, wind speed and atmospheric pressure
are averaged on a daily basis (when solar zenith angle is less than 85◦)
for turbidity estimation, and GHI is averaged on a basis of 5 min. The
quality control (QC) for meteorological recordings is available in the
original dataset, any data point does not meet the QC is excluded when
calculating the daily average. The QC procedure for GHI follows the
steps detailed in Yang (2021), any 1-minute data points do not pass
the QC are discarded when aggregating the GHI to 5 min resolution in
the round way (i.e., data points from 13:58, 13:59, 14:00, 14:01, 14:02
are aggregated and indexed as 14:00).

The 5 min satellite-derived GHI at the SURFRAD stations in the
year of 2019, provided by NSRDB (Sengupta et al., 2018), is also used
in this work for comparison. NSRDB is produced using the PSM and
REST2 (Gueymard, 2008) clear-sky model (the GHIcs estimation from
REST2 is also available in NSRDB), the spatiotemporal resolution is
improved to 5 min and 2 km.

Without extra algorithm for cloud and snow detection, semi-
empirical models (e.g., Heliosat method) could not account for the
406
significant changes in the ground surface albedo due to the snow cover,
which may introduce large uncertainty and unreliability in deriving
surface solar irradiance (Kallio-Myers et al., 2020). Therefore, the GHI
estimation and comparison are performed in the snow-free periods for
all the SURFRAD stations. The information of snow depth is available
from the dataset of National Aeronautics and Space Administration
(NASA) National Snow and Ice Data Center (NSIDC) (Broxton et al.,
2019; Zeng et al., 2018). We use data in full months, however, a month
having only a few days detected with snow cover at the beginning
(or ending) is also included after removing the snow-present days.
The detailed information of snow-free periods at all SURFRAD stations
could be found in Table 2.

2.2. Semi-empirical models

Semi-empirical models are typically developed to exploit data
recorded by the visible channel of a geostationary satellite (Kleissl,
2013), which can be traced from the contribution of Cano et al. (1986).
Compared with physical methods, semi-empirical models use a simpli-
fied radiative-transfer approach (Kleissl, 2013), which are extensively
used in solar resourcing (Albarelo et al., 2015; Lorenzo et al., 2017;
Mouhamet et al., 2018) and forecasting (Kallio-Myers et al., 2020;
Arbizu-Barrena et al., 2017; Harty et al., 2019) applications.

The underlying idea of semi-empirical method is to estimate the
global surface solar irradiance from satellite measurements considering
atmospheric and cloud attenuation separately (Hammer et al., 2003).
In the first step the clear-sky irradiance is derived for a given location
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Table 3
Summary of the strategies used to derive CI for GHI estimation.

Strategy Time windowa Upper bound Lower bound Reference

1 90 days (moving) mean of 20 highest values mean of 40 lowest values Perez et al. (2002)
2 60 days (moving) mean of 20 highest values mean of 40 lowest values Harty et al. (2019)
3 30 days (moving) mean of 10 highest values mean of second to fifth lowest values
4 1 month (fixed) mean of 10 highest values mean of second to fifth lowest values

aTime window is used to determine the dynamic range, a moving time window means it moves with the time of interest, so the upper and
lower bound will change. While the monthly fixed time window means it is fixed in the month of interest, so the upper and lower bounds
remain constant in the month.
and time via a clear-sky model. In the second step the cloud attenuation
is determined from the visible radiance by introducing CI, which is
then correlated to CSI. Finally, the global surface solar irradiance is
calculated from the clear-sky irradiance and CSI (Hammer et al., 2003).

The CI for the SURFRAD stations are calculated following the meth-
ods presented in Perez et al. (2002). First, the pixel value is normalized:

norpix = pix ⋅ AM ⋅ soldist (1)

where pix is the satellite pixel intensity, AM is the absolute airmass, and
soldist [AU] is the Sun–Earth distance. In the original proposed method
in Perez et al. (2002), the raw data such as digital number (digital
count) is used as the pixel intensity. In this work, we first convert the
digital number (scaled integer) to the radiance via the scale factor and
add offset as shown in Table 1, and eliminate the negative data points
considering the radiance measured by the ABI sensor should not be
negative. Note that this step does not show much difference with the
original method but discarding some data points, as the raw pixels are
proportional to the Earth’s radiance observed by the satellite (Perez
et al., 2002) and the linear transformation does not introduce any
non-linearity.

To account for high airmass effect, the normalized pixels consid-
ered for dynamic range maintenance are subjected to a secondary
normalization:

npix = norpix∕(2.283ℎ−0.26 ⋅ exp(0.004ℎ)) (2)

here ℎ [◦] is the solar elevation, which is in the range of 1.5◦ to 65◦

nd the value is set to be 65◦ when the solar elevation is greater than
5◦. Note that although solar elevations of low and medium airmass
re included, they have different normalization extents, where the high
irmass effects could be accounted for.

Then the CI value is determined by:

I = npix − 𝑙𝑜𝑤
ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤

(3)

where ℎ𝑖𝑔ℎ is equal to the mean of the 10 highest npix values in a
month to estimate the upper dynamic range, while 𝑙𝑜𝑤 is calculated
as the mean of the second to the fifth lowest values for that time of
the day in a month, the lowest value is excluded due to its variation
and the undetected defects in the original image (Rigollier et al., 2004;
Albarelo et al., 2015). Our method for determining the upper and
lower bond is different from the methods presented in Ineichen and
Perez (2002), Lorenzo et al. (2017) and Harty et al. (2019), the time
window is one month to better account for the seasonal variations of
the ground reflectance (Hammer et al., 2003; Williamson et al., 2018).
Meanwhile, the low is calculated every 5 min for time in the day
(when the solar zenith angle is less than 80◦) taking advantage of the
mproved time resolution of GOES-16. Four strategies for CI derivation
re compared in this work, where Table 3 details the used time window,
he determinations of upper and lower bounds in each strategy.

After the derivation of CI, the next step is the conversion from CI
o CSI and then to GHI. Similarly, there are also different methods
roposed as shown in Table 4. In general, CI is first converted to CSI
ia an empirical method, GHI is then calculated based on CSI and
HIcs, where GHIcs [W m−2] is the clear-sky GHI estimated from the
407
chosen clear-sky model. In the development of the CI-to-CSI meth-
ods, Perez et al. (2002) compares the old method (Method 1) and
newly-developed method (Method 2) using GOES-8 and GOES-10 satel-
lites, and the involved ground stations are Albany (New York), Burling-
ton (Kansas), Eugene, Gladstone, and Hermiston (Oregon). Method 3
presented in Hammer et al. (2003) and Method 4 proposed in Mueller
et al. (2012) are developed using Meteosat series of satellites and
ground stations in Europe. Therefore, the use of SURFRAD stations in
the comparison of the CI-to-CSI methods is acceptable since they are
not involved in the methods development.

In this study, we apply and compare four clear sky models, namely,
the Ineichen–Perez model (Perez et al., 2002) documented in
PVLIB (Holmgren et al., 2018) using default turbidity interpolated from
SoDa monthly climatology mean database (Remund et al., 2003), the
McClear model (Lefèvre et al., 2013), the REST2 model (Gueymard,
2008), and the Ineichen–Perez model using turbidity estimated from
the local meteorological measurements (Chen and Li, 2022) (hereafter
referred as Ineichen–Perez TL model). Table 5 summarizes the input pa-
rameters for the aforementioned clear-sky models. The detailed method
of estimating the turbidity is introduced in the following subsection.
McClear model and REST2 model are physical models, which might
be generally superior to those models taking reduced forms or using
approximations (Yang, 2020). However, the physical models are of
much more complexity due to their prevailing atmospheric conditions
on the attenuation constituents and the application of RTMs. For
instance, the REST2 model has repeatedly been validated as one of the
models with high-performance (Yang, 2020), but it requires at least
nine input parameters, and some of them such as AOD at 550 nm,
amount of ozone, and precipitable water are difficult to obtain Yang
(2020) and Zhong and Kleissl (2015). The clear-sky irradiance of REST2
used in this work is from the database of NSRDB. The McClear is also
a fully physical model requiring input parameters regarding the optical
property of the atmosphere, e.g., the amount of ozone, precipitable
water, and AOD at 550 nm (Lefèvre et al., 2013). McClear applies a
lookup table to speed up the calculation of RTMs, and the clear-sky
irradiance is available from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) (Schroedter-Homscheidt et al., 2021). The time resolution
is from 1 min to 1 month in the time range of 2004-01-01 up to two
days ago.

2.3. Turbidity estimation

The original method of estimating turbidity via local meteorological
measurements is presented in Chen and Li (2022). Although the original
model is trained based on the data samples focused on clear-sky days,
the results show that the method can also be applied to estimate the
turbidity in partially clear days. In this work, the data samples from
partially clear days are also included in the model training following
the same methodology described in Chen and Li (2022). In specific,
the data used in turbidity estimation for SURFRAD stations are in the
year range of 2010 to 2018. The clear-sky instants are detected by
the Bright-Sun method described in Bright et al. (2020), and the solar
zenith angle is set to be less than 85◦ as the turbidity exhibits high
variations during sunrise and sunset (Chen and Li, 2022). To better
represent the GHIcs-derived turbidity on a daily basis, only a day with
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Table 4
Different methods to calculate GHI via CSI, CI and GHIcs. GHIcs is estimated from a selected clear-sky model.

Method GHI calculation Reference

1
GHI = GHIcs ⋅ CSI

CSI = 0.02 + 0.98 ⋅ (1 − CI)
Perez et al. (2002)

2
GHI = CSI ⋅ GHIcs ⋅ (0.0001 ⋅ CSI + 0.9)

CSI = 2.36 ⋅ CI5 − 6.3 ⋅ CI4 + 6.22 ⋅ CI3 − 2.63 ⋅ CI2 − 0.58 ⋅ CI + 1
Perez et al. (2002)

3

GHI = GHIcs ⋅ CSI

CSI = 1.2,CI ≤ −0.2;

CSI = 1.0 − CI,−0.2 < CI ≤ 0.8;

CSI = 2.0667 − 3.6667 ⋅ CI + 1.6667 ⋅ CI2 , 0.8 < CI ≤ 1.1;

CSI = 0.05, 1.1 < CI.

Hammer et al. (2003)

4

GHI = GHIcs ⋅ CSI

CSI = 1.2,CI ≤ −0.2;

CSI = 1.0 − CI,−0.2 < CI ≤ 0.8;

CSI = 1.1661 − 1.781 ⋅ CI + 0.73 ⋅ CI2 , 0.8 < CI ≤ 1.05;

CSI = 0.09, 1.05 < CI.

Mueller et al. (2012)
Table 5
Input parameters for the used clear-sky models. The variables are the solar constant 𝐼0 [W m−2], solar zenith angle 𝜃 [◦], altitude
ℎ [m], Linke turbidity 𝑇𝐿, surface albedo 𝜌𝑔 , local pressure 𝑃𝑎 [mb], ambient temperature 𝑇𝑎 [K], AOD at 550 nm 𝜏550, Ångström
exponent 𝛼, total ozone amount 𝑢𝑂3

[atm-cm], total precipitable water vapor 𝑢H2O [cm], total nitrogen dioxide amount 𝑢NO2
[atm-cm],

relative humidity 𝜙 [%], wind speed 𝑉 [m s−1].
Clear-sky model Input parameters Data source Reference

Ineichen–Perez 𝐼0, 𝜃, ℎ, 𝑇𝐿 SoDa database (Remund et al., 2003) Perez et al. (2002)
McClear 𝐼0, 𝜃, ℎ, 𝜌𝑔 , 𝑃𝑎, 𝑇𝑎, 𝜏550, 𝛼, 𝑢𝑂3

, 𝑢𝐻2𝑂 CAMS (Schroedter-Homscheidt et al., 2021) Lefèvre et al. (2013)
REST2 𝐼0, 𝜃, 𝜌𝑔 , 𝑃𝑎, 𝜏550, 𝛼, 𝑢𝑂3

, 𝑢𝑁𝑂2
, 𝑢𝐻2𝑂 NSRDB (Sengupta et al., 2018) Gueymard (2008)

Ineichen–Perez TLa 𝐼0, 𝜃, ℎ, 𝑃𝑎, 𝑇𝑎, 𝜙, 𝑉 Local measurements Chen and Li (2022)

aIneichen–Perez TL model is also based on 𝑇𝐿. Instead of using the SoDa database, the 𝑇𝐿 is estimated from local meteorological
measurements (𝑃𝑎, 𝑇𝑎, 𝜙, 𝑉 ) (Chen and Li, 2022).
ore than one third clear-sky instants detected of the daytime are
ncluded (e.g., if the daytime of a day is 8 h, only when the detected
lear-sky instants are more than 2.4 h, the day will be included in
he dataset). It is also necessary to mention that the turbidity typically
aries between 1 and 10 (Antonanzas-Torres et al., 2019), so any de-
ived turbidity with the value less than 1 (or extremely high) should be
xcluded. The turbidity estimation model for each station is trained and
alidated separately. However, it is possible to build a more universal
odel by involving more locations using the same methodology. The

stimated turbidity is then used as the input to calculate the GHIcs
sing PVLIB.

Since semi-empirical model (e.g., Heliosat −2 method) can be
dapted to geostationary satellite in the visible band
0.4–1.1 μm) (Lefèvre et al., 2004), the GOES-16 blue band (visible,
.47 μm), red band (visible, 0.64 μm), and veggie band (near-infrared,
.87 μm) are applied and compared for 5 min GHI estimation in
his work. Apart from different strategies described in Table 3 for
etermining CI, there are also different methods proposed to calculate
he GHI (see Table 4). The detailed comparisons of the reported
trategies, the proposed methods, as well as the applied clear-sky
odels for GHI estimation are presented in the following section. The
erformance evaluation metrics are RMSE, mean bias error (MBE),
nd their normalized counterparts nRMSE and nMBE defined by the
ollowing equations:

MSE =
√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

RMSE =

√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

1
𝑁

∑

𝑜𝑖

MBE = 1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)

nMBE =
∑

(𝑒𝑖 − 𝑜𝑖)
∑
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𝑜𝑖
where 𝑒𝑖 and 𝑜𝑖 are the pair of GHI estimation and ground observation,
𝑁 is the total number of compared data points.

3. Results and discussion

Despite difficulties associated in acquiring the input parameters, the
REST2 model has been proved as the one of the best clear-sky models
for estimating clear-sky irradiance (Sun et al., 2019). Given that the
clear-sky irradiance of REST2 is available in the dataset of NSRDB and
the fact that a better clear-sky model (i.e., McClear) can lead to better
GHI estimation results (Qu et al., 2014), we use the REST2 GHIcs in
the comparison of the GHI estimation performance based on different
ABI bands, empirical regressions between CSI and CI, and methods to
determine the CI. The information of used ABI bands is presented in
Table 1, Table 3 details the strategies used for deriving CI, and the
methods for GHI calculation via GHIcs, CSI, and CI are listed in Table 4.
The comparison of different clear-sky models used in GHI estimation
with semi-empirical method is then based on the combined approach
(i.e., the ABI band, CI derivation, and GHI calculation) that is likely to
obtain superior GHI estimation results.

3.1. Comparison of ABI bands and derivation methods for CI and CSI

Since the GOES-16 ABI bands have different spatial resolution, Band
2 (red) is re-scaled to the same resolution as Band 1 and Band 3.
The comparison of upper and lower bounds determination based on
different ABI bands and strategies at DRA is presented in Fig. 2. The
upper bound from Band 1 has higher values than Bands 2 and 3, while
Band 3 results in relatively lower upper bounds no matter what strategy
is applied. Similarly, lower bound based on Band 1 turns to be higher,
followed by Band 2 and Band 3 has the comparatively lower value.
Unlike upper bounds that do not show many fluctuations, lower bounds
have relatively larger variations. Compared with Strategies 1 and 2,
Strategies 3 and 4 generally leads to larger upper bound and smaller
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Fig. 2. Comparison of the upper bound and lower bound determination using different ABI bands (see Table 1) and strategies at DRA (2019-01-01 to 2019-05-31). S1–S4 are the
symbols of strategies presented in Table 3. The differences between upper and lower bounds are also included for comparison.
lower bound. The reason could be the shorter periods and less points
used for determining upper and lower bounds as shown in Table 3.
This also results in wider dynamic ranges, i.e., the differences between
upper and lower bounds, which exhibit similar trends with the upper
bound, Band 1 leads to higher value than Bands 2 and 3, while Band 3
has the lowest value.

Upper and lower bounds are used to determine CI, CSI is then
calculated from CI using empirical regressions (see Table 4). Fig. 3
shows the comparison of CSI calculations from different bands, CI
derivation strategies, and CI-to-CSI methods, where the CSI reference is
the ratio between GHI measurement and GHIcs from REST2 clear-sky
model. Generally, the CSI derived from Band 1 has smaller divergences
in terms of nRMSE and nMBE with the referenced CSI compared with
the other two bands, while Band 3 shows relatively larger differences
no matter what CI derivation strategy and CI-to-CSI method are applied.
Among the used CI derivation strategies, they have comparable results
in terms of nRMSE, while Strategies 3 and 4 produce lower biases
compared with Strategies 1 and 2. Similarly, there is no huge difference
when comparing the CI-to-CSI methods regarding nRMSE. However,
Methods 3 and 4 are more likely to yield lower nMBE values. It is
worthwhile to mention that the combination of Band 1, Strategy 4,
and Method 3 (or Method 4) outperforms other combinations with
comparatively smaller nRMSE and nMBE.

A detailed comparison of different bands and methods used to
estimate GHI is illustrated in Fig. 4. Using Method 2 generally yields
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GHI estimation with larger nRMSE and nMBE values, while the rest
three methods have comparable GHI estimation results with similar
nRMSE. Method 1 leads to slightly higher nMBE values than Methods
3 and 4. When it comes to the dynamic range and CI determination, all
the strategies generate GHI estimation with nRMSE greater than 20%
no matter which method is used, while Strategies 1 and 2 have slightly
lager values. Moreover, Strategies 1 and 2 comparatively show larger
discrepancies in nMBE than Strategies 3 and 4, while Strategy 4 pro-
duces the lowest nMBE. There is no significant difference (i.e., nRMSE
and nMBE) in Methods 3 and 4 to calculate GHI via the relationship
between CSI and CI regardless of which strategy is applied to derive the
dynamic range and CI. The combination of Strategy 4 and Method 3 (or
Method 4) is likely to generate GHI estimations with lower nRMSE and
nMBE. Strategies 1 and 2 are proposed for GHI estimation at a rough
time resolution (e.g., hourly), which might be inappropriate when the
time resolution is much improved to 5 min. Therefore, the subsequent
results and discussion are based on the combination of Strategy 4 and
Method 3 in 5 min GHI estimation.

It is shown in Fig. 4 that Band 1 generally produces lower nRMSE
and nMBE values than Bands 2 and 3 no matter which combination of
method and strategy is applied in estimating GHI. The possible expla-
nation could be that Band 1 results in higher upper and lower bounds
as well as wider dynamic ranges (see Fig. 2), which are less sensitive
to the uncertainties in sensor’s measurements when determining the
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Fig. 3. The nRMSE and nMBE of the CSI reference and estimation based on different bands, dynamic range and CI derivation, and empirical regressions between CSI and CI at
DRA (2019-01-01 to 2019-05-31). The reference CSI is determined using GHI measurements and REST2 clear-sky model. S1–S4 are the symbols of strategies presented in Table 3,
and M1–M4 represent the empirical methods described in Table 4.
Fig. 4. The nRMSE and nMBE between the GHI measurements and estimations based on different bands, dynamic range and CI derivation, and empirical regressions between GHI
and CI using REST2 clear-sky model at DRA (2019-01-01 to 2019-05-31). S1–S4 are the symbols of strategies presented in Table 3, and M1–M4 represent the empirical methods
described in Table 4.
dynamic range for CI derivation. Therefore, the estimated CSI from
Band 1 show comparatively lower discrepancies than Bands 2 and 3
(see Fig. 3) and thus better GHI estimations. To further evaluate the
performance of GHI estimation using different ABI bands, it is necessary
to ensure that the used methods, data points, and time periods are the
same. Therefore, the REST2 clear-sky model, Strategy 4, and Method
3 are set as the preconditions for comparing the ABI bands used in
semi-empirical model for GHI estimation.

Table 6 details the performance of different ABI bands used for
GHI estimation. Band 1 generates the lowest divergence with a nRMSE
of 21.47% and a nMBE of 1.41%, while Band 3 produces the largest
nRMSE of 24.35% and nMBE of 4.46%. The reflective spectral radiance
measured by the ABI sensor used in GHI estimation with semi-empirical
410
models leads to decreased performance when using bands with larger
wavelength. It is worthwhile to mention that the GHI estimates based
on Band 1 using semi-empirical model have slightly lower errors of
nRMSE and nMBE than the results from NSRDB, which means the semi-
empirical model may produce comparable results with physical models
but with less complexity.

3.2. Comparison of clear-sky models for GHI estimation

Based on the results from the previous subsections, a better GHI
estimation is achieved using the measurements of ABI Band 1, the
Strategy 4 for dynamic range and CI determination, and the Method 3
for CI to GHI conversion. At this stage, the prerequisites for evaluating
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Table 6
Summary of the ABI band performance in 5 min GHI estimation using RSET2 clear-sky
model, Strategy 4, and Method 3 at DRA (2019-01-01 to 2019-05-31). The GHI estimation
from NSRDB is also included as reference.

Band RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%]

1 109.37 21.47 7.18 1.41
2 117.73 23.11 15.21 2.99
3 124.05 24.35 22.75 4.46
NSRDB 110.79 21.74 −13.44 −2.64
Table 7
The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven SURFRAD stations using semi-empirical method
with different clear-sky models under four evaluation cases (all-sky, cloudy days, partially cloudy days, and clear days). The GHI estimation
from NSRDB is also included for comparison.

All-skya Cloudy daysb Partially cloudy daysc Clear daysd

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen–Perez 25.43 2.03 37.60 9.20 19.54 −1.61 5.77 −4.62
McClear 25.38 5.42 38.03 11.87 19.23 1.94 2.55 0.62
REST2 25.19 4.87 37.68 11.32 19.13 1.45 2.53 −0.15
Ineichen–Perez TL 25.53 5.22 38.36 12.80 19.24 1.23 2.53 −1.11
NSRDB 25.25 −0.45 38.37 −1.50 18.75 0.23 2.37 0.45

a ‘All-sky’ means the whole time period with cloudy, partially cloudy and clear days.
b ‘Cloudy days’ means the days without clear-sky periods or the detected clear-sky instants are less than one third of the daytime.
c ‘Partially cloudy days’ includes the days with cloudless periods (more than one third of the daytime).
d ‘Clear days’ only involves the cloudless days.
he performance of different clear-sky models in GHI estimation using
emi-empirical model have been settled. The following sections present
he comparisons between different clear-sky models applied in semi-
mpirical method under different sky conditions. We use two types
f methods for classifying sky conditions here: one is based on days,
n which the days are classified as cloudy, partially cloudy, and clear
ays (Scolari et al., 2018); The other one is based on periods, where the
nstants are grouped as cloudy and clear periods (Larson et al., 2020).
n specific, clear and cloudy instants are detected using the Bright-Sun
ethod with ground irradiance measurements (Bright et al., 2020) and

hen clustered as clear/cloudy/partially cloudy days and clear/cloudy
eriods.

.2.1. Comparison under cloudy, partially cloudy and clear days
The overall performance of GHI estimation using semi-empirical

ethod with different clear-sky models is shown in Table 7. There is
o significant discrepancy between clear-sky models in GHI estimation
nder conditions of all-sky, cloudy, and partially cloudy. REST2 is
ikely to generate slightly lower nRMSE in all-sky and partially cloudy
onditions, while Ineichen–Perez yields the lowest nRMSE when only
loudy days are considered. Compared with the physical model based
HI estimation results in NSRDB, using semi-empirical model produces
HI estimates with similar or slightly larger nRMSE no matter which
lear-sky model is applied. However, there are comparatively larger
iases (i.e., nMBE) in semi-empirical methods under most conditions.
emi-empirical methods are more possibly to have overestimated re-
ults, especially in the cloudy days. Although Ineichen–Perez produces
he lowest nMBE in all-sky and cloudy conditions, it does not mean
neichen–Perez provides better clear-sky irradiance estimations. The
ow overall bias of Ineichen–Perez in GHI estimations is a compromise
f the overestimation in semi-empirical methods and the underestima-
ion in Ineichen–Perez’s clear-sky irradiance, since the Ineichen–Perez
ased GHI estimations in partially cloudy and clear-sky days show
egative biases of −1.61% and −4.62%, respectively.

The primary uncertainty for GHI estimation is caused by the clouds
or both physical and semi-empirical methods. The nRMSE of GHI
stimates in cloudy days are in the range of 37.60%–38.37%, which is
pproximate two times of the nRMSE in partially cloudy days (18.75%–
9.54%). The nRMSE in clear-sky days are around 2.50% besides
neichen–Perez, which has a larger value of 5.77%. Since clouds are the
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rimary factor affecting the solar irradiance reaching the ground level,
it is necessary to improve the method to account the irradiance atten-
uation caused by clouds for both physical and semi-empirical models.
That said, the future research on satellite-based solar resourcing could
be the improvements of satellite-derived cloud properties (for physi-
cal model) and cloud attenuation determinations (for semi-empirical
model).

Fig. 5 presents the detailed comparison of different clear-sky models
for GHI estimation using semi-empirical method at seven SURFRAD
stations under four sky conditions. The GHI estimations based on four
clear-sky models have comparable results in terms of nRMSE under
all-sky, cloudy and partially cloudy conditions, while Ineichen–Perez
tends to generate larger nRMSE values in clear-sky days. Compared
with the physical model based GHI estimation results in NSRDB, using
semi-empirical model produces GHI estimates with similar or slightly
lower nRMSE at most SURFRAD stations except TBL, where the oc-
currence of cloudy days is comparatively higher. For each individual
station, the GHI estimation under cloudy days is most likely associated
with the largest uncertainties of nRMSE and nMBE. The lower biases
of Ineichen–Perez based GHI estimations under all-sky and cloudy
conditions are shown in some of the stations (i.e., BON, GWN, PSU,
and SXF), whose biases are apparently higher in partially cloudy and
clear conditions compared with other clear-sky models, proving the
overestimation in semi-empirical methods and the underestimation in
Ineichen–Perez’s clear-sky irradiance.

3.2.2. Comparison under cloudy and clear periods
To further evaluate the performance of GHI estimation using semi-

empirical model under different conditions, the sky is divided into
cloudy and clear based on periods. The overall comparison at seven
SURFRAD stations is shown in Table 8. Similarly, the GHI estimation
in cloudy periods is associated with larger uncertainties (e.g., nRMSE),
and semi-empirical model is likely to yield higher bias than the physical
model. In cloudless periods, all the clear-sky models except Ineichen–
Perez produce comparable results with NSRDB. When using GHIcs
directly as the GHI estimates, Ineichen–Perez generates the largest
errors, and Ineichen–Perez TL yields better results than other three
clear-sky models.

The detailed comparison of GHI estimation under cloudy and clear
instants for all the SURFRAD stations is presented in Fig. 6. Semi-
empirical model tends to overestimate GHI with comparatively larger
positive biases in cloudy periods, and the highest bias can be about 15%
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Fig. 5. The nRMSE and nMBE between the measured and estimated GHI for four clear-sky models in semi-empirical method, seven SURFRAD stations, and four evaluated conditions
(all-sky, cloudy days, partially cloudy days, and clear days). GHI estimation from NSRDB is also included for comparison.
Table 8
The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven SURFRAD stations using semi-empirical method
with different clear-sky models under three evaluation cases (all-sky, cloudy periods, and clear periods). The GHI estimation from NSRDB is
also included.

All-skya Cloudy periodsb Clear periodsc GHIcsd

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen–Perez 25.43 2.03 31.23 5.03 5.37 −3.93 4.86 −3.29
McClear 25.38 5.42 31.36 8.87 2.98 0.56 2.54 1.22
REST2 25.19 4.87 31.12 8.23 2.91 −0.07 2.43 0.52
Ineichen–Perez TL 25.53 5.22 31.54 9.20 2.81 −0.86 2.16 −0.20
NSRDB 25.25 −0.45 31.21 −1.01 2.43 0.52 – –

a ‘All-sky’ means the whole time period with cloudy and clear instants.
b ‘Cloudy periods’ contains the periods are detected as cloudy.
c ‘Clear periods’ includes all the detected cloudless periods.
d ‘GHIcs’ is to use GHIcs directly as GHI estimation in clear periods.
t TBL. In the application of semi-empirical method, Ineichen–Perez
enerally produces lower bias than the other three clear-sky models
nder cloudy conditions. However, in cloudless periods, Ineichen–
erez is likely to produce GHI estimation with larger discrepancies.
he possible explanation for this is the same as the phenomenon that
neichen–Perez produces GHI estimation with lower biases in all-sky
nd cloudy days as discussed in Section 3.2.1.

.2.3. Comparison between physical and semi-empirical methods for GHI
stimation

In physical model for GHI estimation, the GHIcs is directly used
s the GHI estimate when the sky is free from cloud. Where the
ccuracy of used clear-sky model is crucial for the overall GHI estima-
ion performance. Generally, physical GHI estimation methods apply
hysical clear-sky models, for instance, REST2 in NSRDB, McClear in
eliosat −4. It might be of interest to compare the performance of

GHI estimation using semi-empirical and physical models under clear-
sky conditions. As shown in Table 8, it is more likely to generate
GHI results with relatively lower nRMSE values using GHIcs as GHI
estimates (nRMSE ranges from 2.16% to 4.86%) than CI based method
(nRMSE varies from 2.81%–5.37%). The situation of nMBE differs,
McClear and REST2 produce larger biases, while Ineichen–Perez and
Ineichen–Perez TL yield slightly lower nMBE values. It is worthwhile
to mention that Ineichen–Perez TL has the lowest nRMSE and nMBE,
which means Ineichen–Perez TL has the potential to improve GHI
estimation in physical models.
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The detailed comparison of GHI estimates using semi-empirical
model and GHIcs for SURFRAD stations is presented in Fig. 7. Gener-
ally, both estimated and GHIcs of Ineichen–Perez show larger nRMSE
and nMEB at most of the stations except FPK. Better clear-sky models,
such as McClear and REST2, are likely to produce better GHI esti-
mations with relatively lower nRMSE and nMBE in cloudless periods
using both semi-empirical and physical models. Ineichen–Perez tends
to yield negative biases in GHI estimations or using GHIcs directly
due to its underestimation of clear-sky irradiance. Ineichen–Perez TL
produces comparable results with McClear and REST2 in terms of
nRMSE, while the biases tend to be smaller. For McClear, REST2,
and Ineichen–Perez TL, using the semi-empirical model is probably to
generate GHI estimation with larger nRMSE and nMBE compared with
the direct GHI estimates from GHIcs. Which means another challenge
of semi-empirical method is how to improve the CI and CSI deriva-
tion considering the variations in clear-sky irradiance caused by the
dynamics of aerosol and water vapor in the atmosphere.

All the applied clear-sky models yield comparable overall results
of GHI estimations (see Tables 7 and 8) using semi-empirical method,
REST2 has the lowest nRMSE of 25.19% while Ineichen–Perez TL has
the highest nRMSE of 25.53%. Ineichen–Perez performs better than
other clear-sky models in terms of nRMSE and nMBE under cloudy
conditions, while Ineichen–Perez TL produces the largest nRMSE and
nMBE. Although Ineichen–Perez has the lowest biases in GHI estimation
under all-sky and cloudy conditions, it does not mean that Ineichen–
Perez provides better clear-sky irradiance, as there is a compromise of
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Fig. 6. The nRMSE and nMBE between the GHI measurements and estimates using semi-empirical method for four clear-sky models, seven SURFRAD stations, and three evaluation
conditions (all-sky, cloudy periods, and clear periods).
the overestimation of GHI using semi-empirical model and the under-
estimation of Ineichen–Perez’s GHIcs. Ineichen–Perez tends to generate
negative biases in clear conditions, with the largest nMBE of −4.62%
in clear-sky days and −3.93% in cloudless periods. When comparing
the two physical clear-sky models of McClear and REST2 in the ap-
plication of semi-empirical method, REST2 outperforms McClear in all
the sky conditions with slightly lower nRMSE and nMBE. Compared
with Ineichen–Perez, Ineichen–Perez TL has lower values of nRMSE and
nMBE in partially cloudy days and clear conditions. The GHI estimation
in each individual station (see Figs. 5 and 6) exhibits similar results
as the overall picture but with some site-specific divergences. It is
important to note that Ineichen–Perez TL generally performs better
than other clear-sky models when using GHIcs as the GHI estimations
in clear periods with comparatively lower nRMSE and nMBE.

4. Conclusions

In this work, different strategies for dynamic range and CI determi-
nation, methods to calculate GHI via GHIcs, CSI and CI are compared in
5 min averaged GHI estimation using semi-empirical model and GOES-
16 images. Then, a comparison of three different ABI bands (i.e., blue,
red, veggie) in GHI estimation is performed. Finally, the performance of
four clear-sky models in GHI estimation using the same semi-empirical
method is evaluated under different sky conditions. The key findings
are:

• More accurate 5 min averaged GHI estimates are achieved using
a fixed time window (i.e., Strategy 4), Method 3 (or Method 4) of
GHI conversion from CI and CSI, and Band 1 for solar resourcing
applications (e.g., GHI assessment). A fixed time window is easy
to implement without much computing resource, but it is not
suitable for operational applications, such as solar forecasting,
where a moving time window is required.

• There is no significant difference in GHI estimation using different
clear-sky models, the semi-empirical model yields comparable
results compared with the NSRDB, but with comparatively larger
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biases. Semi-empirical model tends to overestimate the GHI in
cloudy conditions, the uncertainties in cloudy periods are notice-
ably higher than cloud free conditions. Therefore, it is crucial to
determine the irradiance attenuation caused by clouds for both
physical and semi-empirical models.

• In the application of semi-empirical method, Ineichen–Perez has
lower biases under all-sky and cloudy conditions, this does not
mean Ineichen–Perez provides better clear-sky irradiance due to
the compromise of overestimation in semi-empirical model and
Ineichen–Perez’s underestimation of clear-sky irradiance. REST2
generally outperforms McClear under all sky conditions.

• Ineichen–Perez TL, as a modified model based on estimated tur-
bidity, provides GHI estimation using semi-empirical method with
slightly larger values of nRMSE and nMBE in all-sky and cloudy
conditions. The performance of Ineichen–Perez TL under partially
cloudy day and clear periods is comparable with McClear and
REST2, and comparatively better than Ineichen–Perez. When us-
ing clear-sky irradiance as the direct estimation of GHI, Ineichen–
Perez TL has a better performance.

• A better clear-sky model (e.g., REST2 versus McClear) can gener-
ally lead to better GHI estimation using semi-empirical method.
Considering the difficulties associated in obtaining the atmo-
spheric inputs of REST2, and the limited divergences in GHI
estimation between these two clear-sky models, McClear is more
appropriate due to its global availability. Ineichen–Perez TL pro-
vides better clear-sky irradiance for clear-sky conditions, there-
fore has the potential for the improvements in physical models
where clear-sky irradiance is directly used as GHI estimation.
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