
lable at ScienceDirect

Renewable Energy 189 (2022) 259e272
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Improved turbidity estimation from local meteorological data for solar
resourcing and forecasting applications

Shanlin Chen a, Mengying Li a, b, *

a Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
b Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
a r t i c l e i n f o

Article history:
Received 16 October 2021
Received in revised form
8 January 2022
Accepted 24 February 2022
Available online 3 March 2022

Keywords:
Clear-sky irradiance
Turbidity estimation
Meteorological measurements
Machine learning methods
* Corresponding author. Department of Mechanical
Polytechnic University, Hong Kong Special Administra

E-mail address: mengying.li@polyu.edu.hk (M. Li)

https://doi.org/10.1016/j.renene.2022.02.107
0960-1481/© 2022 Elsevier Ltd. All rights reserved.
a b s t r a c t

This work presents a new method to estimate atmospheric turbidity with improved accuracy in esti-
mating clear-sky irradiance. The turbidity is estimated by machine learning algorithms using commonly
measured meteorological data including ambient air temperature, relative humidity, wind speed and
atmospheric pressure. The estimated turbidity is then served as the Linke Turbidity input to the
Ineichen-Perez clear-sky model to estimate clear-sky global horizontal irradiance (GHI) and direct
normal irradiance (DNI). When compared with the original Ineichen-Perez model which uses interpo-
lated turbidity from the monthly climatological means, our turbidity estimation better captures its daily,
seasonal, and annual variations. When using the improved turbidity estimation in the Ineichen-Perez
model, the root mean square error (RMSE) of clear-sky GHI is reduced from 24.02 W m�2 to
9.94 W m�2. The RMSE of clear-sky DNI is deceased from 76.40 W m�2 to 29.96 W m�2. The presented
method is also capable to estimate turbidity in partially cloudy days with improved accuracy, evidenced
by that the corresponding estimated clear-sky irradiance has smaller deviation frommeasured irradiance
in the cloudless time instants. In sum, the proposed method brings new insights about turbidity esti-
mation in both clear and partially cloudy days, providing support to solar resourcing and forecasting.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Solar radiation reaching the Earth surface is either absorbed or
scattered by the atmosphere based on the types and concentrations
of the participating constituents and their radiative optical prop-
erties [1]. For solar energy conversion systems such as photovol-
taics (PV) and concentrating solar power (CSP), ground level
irradiance assessment and forecasting are crucial for their design
and operation [2e5]. The attenuation of ground level solar irradi-
ance is mainly caused by clouds, aerosols, water vapor, carbon di-
oxide and ozone [6], where clouds are the major modulator
followed by aerosols and water vapor. However, the high temporal
and spatial variations of the three major modulators as well as
sensing difficulties of their concentrations [7] have posed consid-
erable challenges for solar resourcing and forecasting applications.
Therefore, a variety of clear-sky models have been developed over
the years to estimate time varying ground level global horizontal
Engineering, The Hong Kong
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.

irradiance (GHI), direct normal irradiance (DNI) and diffuse hori-
zontal irradiance (DHI) if there were no clouds in the sky. The clear-
sky models have been used extensively to quantify the effects of
local aerosols and water vapor, as well as to facilitate cloud iden-
tification and analysis for forecasting applications [1,8e10].

As summarized in Refs. [10,11], clear-sky models with different
complexity andperformance can be broadly classified into twomain
groups: physical models and empirical models. Physical models
apply radiative transfer models (RTMs) to estimate the irradiance
attenuation effect of atmospheric constituents, and the ground level
solar irradiance can be obtained through integration of the attenu-
ation caused by different atmospheric components [10]. Empirical
models arebasedon simplifiedparameterizations of the attenuation
processes [10], which estimate the clear-sky irradiance using some
atmospheric parameters, such as the aerosol optical depth (AOD)
and precipitable water in simplified Solis model [12], and the Linke
turbidity (TL) in Ineichen-Perez model [13].

Physical models perform detailed analysis of the atmospheric
attenuation processes, which generally lead to higher accuracy
[11,14]. However, they require many inputs about local atmospheric
conditions, some of them are not widely available. For instance, the
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REST2 model [15] has been verified as one of the most accurate
clear-sky models [11,14], but the required information about the
atmospheric constituents, such as AOD at 550 nm, column amount
of ozone, nitrogen dioxide and precipitable water are difficult to
obtain for most locations [14,16]. Yang [14] discussed the choice of
clear-sky models in solar forecasting applications from the per-
spectives of accessibility, forecast performance and statistical
properties. It is found that high-fidelity physical models like REST2
are not frequently used for solar forecasting due to its complexity,
and no evidence suggests that physical models can lead to more
accurate forecast results when compared with empirical models
[14].

As a member of the empirical model family, the Ineichen-Perez
model is extensively used in solar forecasting due to its simplicity
[14]. The main input of the Ineichen-Perez model is the TL factor,
which is defined as the number of clean and dry atmospheres that
produce the same attenuation equivalent to the real atmosphere
[17]. The TL factor quantifies the attenuation of aerosols and water
vapor [18], which typically varies between 1 and 10 [10]. The TL
factor is available worldwide as monthly climatology value from
the SoDa database [19]. In PVLIB [20], linear interpolations of the
monthly values are applied to build daily TL time series for each
location when using the Ineichen-Perez clear-sky model.

The TL factor is also directly used in other clear-sky models
[10,21]. However, the invariant TL factor based on the monthly
climatology value and its linear interpolation cannot account for
the short-term [22] and long-term variations [23] of atmospheric
aerosols and water vapor concentrations, resulting in unsatisfying
estimation of clear-sky irradiance [24]. The discrepancy of clear-sky
irradiance obtained from TL based clear-sky models and from
measurements are observed in the studies by Moldovan et al. [21]
and Polo et al. [22], and also noticeable when comparing the clear-
sky solar irradiance measurements from Dessert Rock, Nevada
(DRA) with PVLIB clear-sky model output (see Fig. 1).
Fig. 1. Comparison of measured clear-sky GHI (GHIcs) with PVLIB GHIcs of the same day in d
monthly climatology value. The PVLIB GHIcs remains the same on the same day of different
(i.e., yearly) basis.
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Therefore, some studies were conducted to estimate TL factor
by different means with the aim to investigate its variations or to
improve the estimation accuracy. Chaâbane et al. [7] adopted
pyrheliometric measurements for the calculation of TL factor in
Tunisia during three summer months, where diurnal and
monthly variations of TL factor are observed. Polo et al. [22]
estimated the daily TL factor for clear days by using global irra-
diance measurements at solar noon and monthly mean TL values.
Using the estimated TL to recalculate clear-sky solar irradiance
results in a reduced root mean squared deviation (RMSD) when
compared with using monthly mean values. The relative RMSD
(rRMSD) decreases from 17.1% to 14.2% for the dataset of Baseline
Surface Radiation Network (BSRN). For the dataset from Spanish
Meteorological Agency (AEMet), the rRMSD reduces from 24.4%
to 16.8%. Hove and Manyumbu [25] calculated the TL factor based
on daily GHIcs and ESRA clear-sky model [26], which typically
has a lower value than the monthly mean. Inman et al. [27] re-
ported a method for daily average TL estimation using broadband
DNI measurements under cloudless skies, and then applied the
estimated TL in DNI forecasting during cloud-free periods under
the assumption of a persistence of daily averaged TL within the
forecasting horizon. The relative RMSE (rRMSE) and relative mean
bias error (rMBE) are smaller than 5% for both historical and
forecasted values, which are much smaller than the error range
(10e20%) of SoDa monthly means. Behar et al. [28] used ambient
temperature and relative humidity to estimate TL and solar irra-
diance via the estimated optical thickness of clean-dry atmo-
sphere, water vapor and aerosol. The TL estimation has a rRMSE
of 10.22% and a rMBE of 1.31%, the rRMSE and rMBE of corre-
sponding DNI estimate are 5.21% and 0.91%, respectively. Mol-
dovan et al. [21] applied time dependent interpolation
polynomials instead of a constant daily TL factor to improve the
clear-sky model. Two different interpolation polynomials are
obtained for the TL factor in warm and cold seasons, respectively.
ifferent years. PVLIB uses the TL factor from its look-up table, which is based on constant
years, while the measured GHIcs are not, indicating TL factor also varies on a long term
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The result shows that the relative error is reduced from 8.12% to
4% in the warm season and from 5.02% to 4.15% in the cold
season.

The derivation of TL based on irradiance and meteorological
measurements offers a simpler way to estimate TL without the
detailed information about aerosol and water vapor contents.
However, the methods summarized above still have some short-
comings to overcome. For example, the clear-sky irradiance mea-
surements are not available in a cloudy day, and only using the
GHIcs at the solar noon presented by Polo et al. [22] may lead to
errors in estimating the clear-sky irradiance in other periods such
as solar mornings, evenings and cloudy days. The method also
cannot be used for locations without irradiance measurements. For
the method presented by Behar et al. [28], using ambient temper-
ature and relative humidity to estimate perceptible water and AOD
may result in error accumulations in estimating TL. For the study by
Modlovan et al. [21], the TL interpolation polynomials for warm and
cold seasons are not capable of accounting for year-to-year TL
variation as shown in Fig. 1.

Therefore, we propose a new TL estimation method to estimate
high-fidelity TL with the consideration of its short-term and long-
term variations, and without the data dependence on local real-
time irradiance measurements. The TL factor is proposed to be
estimated using local meteorological data by machine learning
(ML) algorithms. In the following sections, data processing and
proposed methodology are presented in Section 2. Section 3 pre-
sents the results and discussions of TL and corresponding clear-sky
irradiance estimations. The key findings and recommendations are
summarized in Section 4.
2. Methodology of turbidity estimation

This section presents the data and methods used for TL deriva-
tion and estimation. The TL derivation is performed by applying
Ineichen-Perez clear-sky model (PVLIB) reversely, i.e., taking the 1-
min averaged GHIcs as the input to compute the ‘ground truth’ TL.
Then the derived minute-wise TL time series is further averaged on
the basis of daily, hourly and 5-min as the ML model training tar-
gets. The input meteorological data is also averaged with the same
time basis for model training, tuning and testing. Finally, the
trained model is applied to estimate the TL for GHIcs estimation.
The flowchart of the method for estimating the TL and clear-sky
irradiance is shown in Fig. 2. The TL derivation and estimation can
Fig. 2. An overview of the method to derive and estimate TL. The model for estimating the d
also averaged on the same time basis.
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also be applied to clear-sky DNI (DNIcs), which will be discussed in
Section 3.3.

2.1. Data selection

The data used in this work is from DRA, one of the Surface Ra-
diation Budget Network (SURFRAD) stations [29]. DRA has a lati-
tude of 36.62373�N, a longitude of 116.01947�W, an elevation of
1007 m, and a time zone of UTC-8 (8 h difference than coordinated
universal time (UTC)). High resolution solar irradiance and mete-
orological data collected from year 2000e2020 are used in this
work. Among the diverse variables in the comprehensive dataset,
measurements of the downwelling global solar irradiance (GHI),
direct normal irradiance (DNI), ambient air temperature (Ta), rela-
tive humidity (f), wind speed (V) and local atmospheric pressure
(Pa) are selected to build and test the proposed TL estimationmodel.
The selected data has high temporal resolutions (3-min averaged
from year 2001e2008, and 1-min averaged from year 2009e2020)
and its quality is carefully controlled.

DRA is chosen among the seven SURFRAD stations due to its
high occurrence of cloudless days, which could provide adequate
learning samples for the development and validation of the pro-
posed TL estimation model. The same methodology can be applied
to other locations if sufficient data is given.

2.2. Selection of clear-sky days

The clear-sky irradiance is defined as the incident radiation at
the Earth's surface under the conditions that would occur under a
perfect “cloudless sky” [30]. The presence of clouds in the sky,
especially when clouds obscure the Sun disc, will greatly affect the
surface solar radiation, resulting in irradiance fluctuations. Since TL
is a factor that quantifies the attenuation of solar irradiance by
atmospheric constituents (especially water vapor and aerosols)
under cloud-free conditions, we only select clear-sky days for
model development and validation.

The clear-sky days are selected following the approach devel-
oped by Long and his collaborators [31e33], and the clear-sky labels
provided by RadFlux algorithm [31,33] are publicly available on the
website of SURFRAD network. Specifically, the days will be labeled
as “clear-sky day” if most of the time instants within the day are
“clear” as detected by solar shortwave irradiance measurements
(l < 4 mm), or detected by atmospheric longwave irradiance
aily, hourly and 5-min TL is trained independently, and the input meteorological data is
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measurements (l > 4 mm). The shortwave clear-sky detection al-
gorithm has a 160� field of view, so the clear-sky instants with high
solar zenith angles could not be detected [32]. During the daytime,
the presence of clouds is more noticeable in the shortwave spec-
trumwhen compared with the longwave spectrum [33]. Therefore,
most of the clear-sky instants detected by the longwave RadFlux
algorithm [33] are in the nighttime. To verify the RadFlux clear-sky
labels, we performed an additional manual check by comparing the
measured GHI, clear-sky GHI estimated by RadFlux [34] and
IneichenePerez clear-sky model from PVLIB [20]. Then, clear-sky
detection for periods with high solar zenith angles are performed,
and wrongly labeled clear-sky days are removed, as demonstrated
in Fig. 3. Our training and testing datasets only contain the clear-sky
days that pass both the RadFlux and manual checks (examples are
presented in Fig. 3).
2.3. Derivation of ‘ground truth’ turbidity for model training

We adapt the methodology documented in PVLIB [20] to derive
‘ground truth’ TL factor for model development. At each clear-sky
time instance, the ‘ground truth’ TL factor is derived from
measured GHIcs values by inverting the following equation pro-
vided in PVLIB (proposed in Ref. [13]),

GHIcs ¼ c1,I0,cosðqÞ,expð � c2,AM,ðf1 þ f2,ðTL � 1ÞÞ Þ
Then the derived TL based on GHIcs measurement is,

TL ¼
�
ln
�

GHIcs
c1,I0,cosðqÞ

��
ð�c2 ,AMÞ � f1

��
f2 þ 1 (1)

TL could also be derived from DNIcs by inverting the following
equations from PVLIB,

B1 ¼ I0,b,expð�0:09 ,AM , ðTL �1ÞÞ

B2 ¼ GHIcs,
��

1� ð0:1� 0:2,expð�TLÞÞ
ð0:1þ 0:882=f1Þ

��
cosðqÞ

�

Fig. 3. Examples of clear-sky days selection in DRA. Measured GHI data is from SURFRAD, GH
A detected full clear-sky day. (b) A detected clear-sky day with high solar zenith periods not
typical partly cloudy day.
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DNIcs ¼ MinimumðB1;B2Þ
Then the derived TL based on DNIcs measurements is,

TL ¼ ln
�
DNIcs
I0,b

��
ð�0:09 ,AMÞ þ 1; ðwhen B1 < B2Þ (2)

TL ¼ �ln
��

0:1�
�
1

� DNIcs
GHIcs

,cosðqÞ
�
,ð0:1þ0:882 = f1Þ

��
0:2

�
; ðwhen B1 > B2

(3)

with:

AM¼
0
@ 1

cosðqÞþ0:50572,
�
6:07995þð90�qÞ�1:6364

�
1
A,

Pa
101325

c1 ¼ 5:09,10�5,hþ 0:868

c2 ¼ 3:92,10�5,hþ 0:038 7

f1 ¼ expð�h =8000Þ

f2 ¼ expð�h =1250Þ

b ¼ 0:664þ 0:163=f1

where GHIcs [Wm�2] is the measured clear-sky GHI. DNIcs
[Wm�2] is the measured clear-sky DNI. B [Wm�2] is the normal
beam clear-sky radiation. c1, c2, f1, f2, b are altitude-dependant
coefficients, I0 [Wm�2] is the solar constant, q[�] represents the
solar zenith angle, AM is the absolute airmass, TL is the Linke
Turbidity factor, Pa [Pa] is the local atmospheric pressure, and h
[m] is local altitude.
Ics are computed by both RadFlux and PVLIB. The clear-sky labels are from RadFlux. (a)
labeled. (c) A wrongly labeled clear-sky day which is removed by manual check. (d) A



Fig. 4. Derived TL time series with different averaging modes for a clear-sky day with respect to local standard time (LST). (a) Derived TL time series on 2020-02-26. The derived TL
shows high variations and unrealistic values in the periods with high solar zenith angles. (b) Averaged TL on different time basis and the irradiance difference between measured
GHIcs and PVLIB GHIcs during the day.
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Fig. 4 (a) illustrates the GHIcs-derived TL in a randomly selected
clear-sky day (one can find similar results in any other clear-sky
days). Unlike the TL factor used in PVLIB default calculations, the
derived TL factor is not a constant but varies during the day. Note that
for periods with large solar zenith angle (greater than 85�), the
derived TL has large variations and unrealistic values (less than 1.0
and even negative), which are resulted from the applicable limita-
tions of Eq. (1). Therefore, in the following sections when derived TL
time series are temporally averaged, the instances from the period
when the solar zenith is greater than 85� are not included. Fig. 4 (b)
shows the TL time series averaged on different time basis, where the
daily averaged TL is much lower than the value used in PVLIB. The
asymmetry of estimated TL with respect to the zenith angle is
observed in Fig. 4 (b), especially during morning and evening pe-
riods. This is possibly due to the high airmass effect, where the small
difference in measured clear-sky irradiance will result in large
discrepancy in the derived TL values. In addition, the profile of clear-
sky irradiance is not perfectly symmetric as shown in Fig. 4 (b) that
themeasuredGHIcs in themorning (e.g., 6:00e8:00) is smaller than
the ones near the evening (e.g.,16:00e18:00).Meanwhile, thewater
vapor content in the atmosphere is usually higher in the morning,
which results in higher TL values and thus lower GHIcs.
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The averaged TL derivations are then used to recalculate the 1-
min averaged GHIcs using PVLIB, which shows noticeable
improvement in estimating GHIcs, as shown in Fig. 5. In the clear-
sky days of 2019 and 2020 (a total of 84 days are identified as clear),
using PVLIB TL generally underestimates the GHIcs with amean bias
error (MBE) of�20.48Wm�2 and a root mean square error (RMSE)
of 24.02 W m�2, when computed using 1-min averaged data when
solar zenith angle is smaller than 85�. Using derived daily mean TL
yields a GHIcs estimation with overall MBE of 0.34 W m�2 and
RMSE of 6.74 W m�2, a 98.3% reduction in MBE and 71.9% decrease
in RMSE. As the time resolution increases, the recalculated results
become better as expected. Hourly mean TL produces a RMSE of
2.81 W m�2 and a MBE of 0.05 W m�2 for GHIcs estimation. The 5-
min averaged TL gives an estimation of GHIcs with the lowest MBE
of 0.01 W m�2 and lowest RMSE of 0.55 W m�2. In general, using
daily mean TL can successfully correct the bias in estimating GHIcs
and reduce RMSE by 71.9%. Using temporally finer hourly and 5-
min averaged TL can further reduce the RMSE in GHIcs estima-
tions, but they also substantially increased the size of training data
in the following ML based TL estimation models.



Fig. 5. Comparison of GHIcs estimation using different TL averaging modes for the clear-sky days in year 2019 and 2020. (a) Daily RMSE of 1-min averaged GHIcs estimation. (b)
Daily MBE of 1-min averaged GHIcs estimation. All the derived TL regardless of averaging mode produce more accurate GHIcs than PVLIB.
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2.4. Turbidity estimation from local meteorological data

The previous section demonstrates that improving TL estima-
tions could substantially improve the accuracy of GHIcs estima-
tions. However, the TL is derived from GHIcs measurements, which
is not known as a priori in real-time applications. Therefore, we
propose to use ML methods with widely available meteorological
measurements to estimate local TL.

We use three independent ML models for daily, hourly and 5-
min averaged TL factors. The label (target) is the averaged TL deri-
vations from Section 2.3, and the input parameters are: the default
PVLIB TL, ambient air temperature Ta, relative humidity f (and its
logarithm), wind speed V, atmospheric pressure Pa, day of year
(DOY), and estimated precipitable water Pwe. The meteorological
time series (i.e., air temperature, relative humidity, wind speed,
pressure) are averaged on the same time basis as the TL. The PVLIB
TL is adapted to the corresponding time resolution as well. The
logarithm of relative humidity is based on its averaged value, and
the estimated precipitable water is calculated from the averaged
264
temperature and the averaged relative humidity using the empir-
ical model proposed by Gueymard [35,36] with the following
equations.

Pwe ¼ 0:1,Hv,rv

Hv ¼ 0:4976þ 1:5265,Ta
273:15

þ exp

 
13:689 7,Ta

273:15

� 14:9188,
�

Ta
273:15

�3
!

rv ¼ 216:7,f,es=Ta
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es ¼ exp

 
22:330� 49:140,

100
Ta

� 10:922,
�
100
Ta

�2

� 0:390 15
Ta
100

!

where Pwe [cm] is the estimated precipitable water. Hv [km] is the
apparent water vapor scale height. rv [g m�3] is the surface water
vapor density. f [%] is the relative humidity. es [millibar] is the
saturation water vapor pressure. Ta [�C] is the ambient air
temperature.

ML technique is a powerful tool in regression modelling, which
can model the relations between input features and target espe-
cially when the representation is complicated. ML algorithms have
been widely used in classification, prediction and pattern recog-
nition applications [37]. Here, we apply and compare Linear
Regression (LR), Random Forest (RF), and Multilayer Perceptron
(MLP) for TL estimation, which are three commonly available and
extensively used methods in real applications.

LR involves a linear combination of the input variables, which
may have significant limitations for pattern recognition, particu-
larly for problems with high dimensionality [37]. Therefore, linear
model is extended by considering linear combinations of fixed
nonlinear functions (basis function) of the input variables. Poly-
nomial (powers of input variables) regression is one example of the
extended linear models [37]. Although linear models are consid-
ered relatively simple and might not be suitable for high-
dimensional problems, they have good analytical properties and
form the fundamental for more advanced models [37]. Here we
apply LR as a reference method in estimating TL.

RF regressor is an ensemble method that combines several
randomized regression decision trees to achieve a better perfor-
mance [38]. RF is a bagging technique, all the involved decision
trees are built in parallel and depend on the random vectors
sampled from the training dataset. The predictions are averaged
using bootstrap aggregation, which is one of the most
computational-efficient methods to improve stability of the esti-
mates [38]. RF models have been demonstrated to be robust pre-
dictors for both small sample sizes and data with high
dimensionality [38].

MLP is also known as feed-forward neural network, which
consists of an input layer, one ormore hidden layers and one output
layer [37]. MLP networks have high flexibility in approximation and
can easily extend the structure by adding more hidden layers. MLP
networks are trained and the parameters are obtained by back
propagation [37]. There are different nonlinear activation functions
of hidden layer(s), which could differ for different applications.

Data from 2000 to 2018 is used as the training set (20% of which
Table 1
Comparison of 1-minute averaged GHIcs recalculations and estimations using
derived and estimated TL for clear-sky days in the year of 2019 and 2020. PVLIB
results are presented here for reference.

TL GHIcs recalculationsa GHIcs estimationsb

RMSE [Wm�2] MBE [Wm�2] RMSE [Wm�2] MBE [Wm�2]

Daily mean 6.74 0.34 9.94 2.09
Hourly mean 2.81 0.05 9.62 1.45
5-min mean 0.55 0.01 10.28 �0.01
PVLIBc 24.02 �20.48 24.02 �20.48

a GHIcs recalculations are based on the averaged TL factors derived from GHIcs.
b GHIcs estimations are based on the estimated TL factors from the ML (MLP)

models with meteorological parameters as input.
c PVLIB uses the daily interpolated TL based on the monthly climatological TL map.
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is for validation) and data from 2019 to 2020 is used for testing. The
model hyperparameters are tuned by using tenfold cross-validation
method. The error evaluation metrics are MBE, RMSE and their
normalized counterparts. All the above-mentioned ML models are
adapted from Scikit-learn [39] and PyCaret [40], where more de-
tails regarding the applied algorithms can be found.

3. Results and discussion

The best ML model is selected separately for daily, hourly and 5-
min averaged TL estimation, and the overall corresponding 1-min
averaged GHIcs estimation results for clear-sky days in year 2019
and 2020 are presented in Table 1. Compared with the GHIcs
recalculation, GHIcs based on the estimated TL yields slightly larger
MBE and RMSE. Although 5-min averaged TL has the best perfor-
mance for GHIcs recalculations, but the fine temporal resolution
does not show much superior results in GHIcs estimation. Esti-
mating hourly averaged TL results to better GHIcs estimation with
an MBE of 1.45 W m�2 and a RMSE of 9.62 W m�2. Using daily
averaged TL achieves a comparable result with slightly larger MBE
of 2.09Wm�2 and RMSE of 9.94Wm�2. Given that less complexity
and computational resource are required for using daily averaged
TL, the subsequent results and discussion are based on the daily
averaged TL and the associated model.

3.1. Estimations of daily turbidity and 1-minute averaged GHIcs in
clear-sky days

When compared with the monthly climatology mean of TL, the
derived daily TL generally has a lower value and has a much higher
fluctuation (see Fig. 6 (a)). The TL values of 2020 is different from the
year of 2019, which indicates the TL also has a yearly variation. This
long-term fluctuation of TL is possibly caused by pollution [23] and
the dynamics of aerosols and water vapor in the atmosphere [22].
Among the applied ML algorithms, MLP regressor gives the best
results as shown in Table 2 and Fig. 6, with comparatively lower
testing RMSE and MBE values.The normalized RMSE (nRMSE) of TL
estimation from all the ML models are around 10%. The learning
curve of MLP regressor is shown in Fig. 7.

Fig. 8 (a) presents the sensitivity analysis of the meteorological
inputs for the MLP model. The estimated TL increases when the
temperature and relative humidity become higher, while the in-
creases in wind speed and pressure lead to a drop in the TL esti-
mation. Wind speed is the least sensitive parameter, so its impact
on the TL estimation is limited. Relative humidity and temperature
have comparatively larger influence than wind speed, and tem-
perature is a more crucial input for TL estimation compared with
relative humidity. Regards to local pressure, it does not have large
variance as shown in Fig. 8 (b), so either increase or decrease
pressure by 10% would lead it to be out of its min-max range. Since
the MLP model is trained based on data samples with a small range
of pressure variation, the out-of-range pressure will produce un-
realistic TL estimation. This is why the pressure shows the relatively
larger sensitivity. In practical applications, the pressure of a certain
place has limited variation, so its influence on TL estimation also
remains limited.

When using the estimated daily TL from the MLP model to es-
timate 1-min averaged GHIcs, most of the tested clear-sky days in
the year of 2019 and 2020 show noticeable improvements when
compared with the PVLIB GHIcs in terms of RMSE and MBE (see
Fig. 9). The overall RMSE of GHIcs estimation using the MLP-
estimated TL in 2019 and 2020 is 9.94 W m�2, which is slightly
higher than the RMSE (6.74Wm�2) of GHIcs recalculation from the
derived TL, but much lower than the RMSE of 24.02 W m�2 from
PVLIB. Note that there are some cases of model underperformance,



Fig. 6. Comparison of the derived daily TL and PVLIB TL and the performance of applied ML methods. (a) The comparison of derived TL and PVLIB TL. The comparison between
derived TL and estimated TL from different methods (b) Linear Regression (c) Random Forest Regressor and (d) MLP Regressor.

Table 2
Training and testing errors of the applied ML algorithms for TL estimation.

ML algorithm Training Testing

RMSE MBE RMSE MBE

LR 0.2452 0.0000 0.2104 �0.0644
RF 0.2127 �0.0004 0.2098 �0.0591
MLP 0.2339 0.0044 0.2066 �0.0520

Fig. 7. Learning curve of MLP regressor with tenfold cross validation. The dots
represent mean values, and the related shadows reflect the standard derivation.
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which are likely due to that PVLIB TL is already close to the derived
TL. Nevertheless, the GHIcs estimation using the estimated TL factor
has an overall better performance compared with PVLIB, which
uses unmodified TL based on the monthly climatology values,
especially when the PVLIB GHIcs and measured GHIcs have large
discrepancy.
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3.2. Estimations of daily turbidity and 1-minute averaged GHIcs in
partially clear days

Furthermore, we test our TL estimationmodel in partially cloudy
days when not all periods are cloudless throughout the day. As
shown in Fig. 10, the model is also applicable to estimate TL in this
case and the corresponding 1-min averaged GHIcs estimation
shows better agreement when compared with PVLIB for the clear-
sky instants during the day. The potential explanation to this
phenomenon is that the presence of clouds in partially clear days
has limited effect on local meteorological parameters as well as
ground level aerosols and water vapor concentrations. Accordingly,
using local meteorological measurements (e.g., temperature, rela-
tive humidity) to estimate GHI with the presence of clouds may not
be effective. Note that the phenomenon could be different in fully
overcast days as the meteorological parameters might be affected,
which needs further investigation. Nevertheless, the trained model
works for the partially cloudy days, which would provide more
accurate clear-sky irradiance during those periods for solar
resourcing and forecasting applications. In addition, since the ML
model can estimate TL in both clear-sky and partially cloudy days,
the derived TL from the clear-sky instants in the partially cloudy
days as well as corresponding meteorological variables can be
included in the dataset for model development and testing. Which
in turn can provide more data for ML model training and could
potentially improve the model accuracy.

3.3. Estimations of daily turbidity and 1-minute averaged DNIcs

The same method is applied to estimate 1-min averaged DNIcs
using the improved TL estimations. Since PVLIB uses the same TL
value for calculating GHIcs and DNIcs, we use the GHIcs-estimated
TL to estimate DNIcs, as shown in Fig.11. Both the recalculations and
estimations have better overall performance than PVLIB, the RMSE
is reduced from 76.40 W m�2 to 47.16 W m�2 and 50.77 W m�2,



Fig. 8. Sensitivity analysis and statistical properties of the meteorological inputs for the MLP model. (a) Sensitivity analysis based on the changes of a sole parameter, where the base
is the mean value. (b) Box chart of the normalized meteorological measurements.
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respectively. The MBE is decreased from �62.45 W m�2 to
32.34 W m�2 for recalculations, and to 39.93 W m�2 for estima-
tions. However, the error reduction is not as effective as GHIcs
estimation, as it is noticed that the derived TL from GHIcs could not
always lead to better DNIcs estimations than PVLIB. Consequently,
the estimated TL could potentially lead to large errors by accumu-
lating uncertainties in TL estimation, as shown in Fig. 11.

To further improve the accuracy of DNIcs estimations, we derive
TL from DNIcs and develop separate ML models for TL estimation
following the similar strategy as described in Section 2. TL is derived
using Eqs. (2) and (3) from measured clear-sky DNI. A comparison
among different TL modelling methods for DNIcs estimation is
shown in Table 3. All the improved TL factors for DNIcs recalcula-
tions and estimations have superior results than default PVLIB. The
5-min averaged TL gives the lowest RMSE of 5.74 Wm�2 and a MBE
of �1.36 W m�2 for recalculating DNIcs, while daily mean TL gen-
erates a RMSE of 18.93 W m�2 and a MBE of 1.75 W m�2. However,
the developed MLP models for daily, hourly and 5-min TL estima-
tion yield comparable results for estimating DNIcs, which means
averaging TL on smaller time basis has limited potential to improve
the DNIcs estimation accuracy. Since using daily mean TL can
generate comparable DNIcs estimations with less complexity, a
267
detailed comparison of DNIcs estimation by suing estimated daily
TL and default PVLIB TL is shown in Fig. 12.

From the perspective of atmospheric radiative transfer, DNI is
comparatively more sensitive than GHI to the variations of atmo-
spheric constituents and cloud dynamics, as GHI is the sum of DHI
and the horizontal projection of DNI (GHI ¼ DNI , cos(q) þ DHI,
where q[�] is the solar zenith angle). The rapidly changing DNIcs in
the solar morning and evening also makes the DNIcs estimation
more challenging than GHIcs. As demonstrated by our results, the
default PVLIB TL yields a RMSE of 76.40 W m�2 and a MBE
of �62.45 W m�2 for DNIcs estimation, which is about three times
of the RMSE (24.02Wm�2) andMBE (-20.48Wm�2) for estimating
GHIcs.

Compared with GHIcs estimation from derived and estimated TL
factors, DNIcs estimation generally has comparatively larger errors
of RMSE and MBE (see Tables 1 and 3). Using the 5-min averaged TL
factor almost produce a “perfect” GHIcs recalculation with the
RMSE of 0.55 W m�2 and MBE of 0.01 W m�2, while the RMSE is
5.74Wm�2 andMBE is�1.36Wm�2 for DNIcs recalculation.When
it comes to estimation, the ML model (MLP is chosen) estimated
daily TL for DNIcs estimation has a RMSE of 29.96 W m�2, which is
nearly three times of the RMSE (9.94 W m�2) of estimating GHIcs.



Fig. 9. The comparison of GHIcs estimation based on derived and estimated daily TL factors. (a) Daily RMSE of GHIcs estimation. (b) Daily MBE of GHIcs estimation. Generally, the
estimated TL performs better than the default PVLIB TL factor.

Fig. 10. Examples of GHI in partially cloudy days during (a) 2019-03-30 (b) 2029-12-27 (c) 2020-03-31 (d) 2020-04-03. The GHIcs calculated from the estimated TL shows a higher
accuracy than PVLIB when compared with measured GHI in the clear-sky instants.
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Fig. 11. The RMSE and MBE of DNIcs estimation using the GHIcs-based derived and estimated TL. Both recalculations and estimations have lower overall RMSE and MBE than PVLIB
but with some exceptions.

Table 3
Comparison of DNIcs recalculations and estimations using derived and estimated TL
for clear-sky days in the year of 2019 and 2020. Although 5-minute averaged TL has
the lowest RMSE for DNIcs recalculations, the 1-min averaged DNIcs estimations
based on daily, hourly and 5-min averaged TL show little difference.

TL DNIcs recalculationsa DNIcs estimationsb

RMSE [Wm�2] MBE [Wm�2] RMSE [Wm�2] MBE [Wm�2]

Daily mean 18.93 �1.75 29.96 2.68
Hourly mean 8.96 �1.46 30.75 �0.04
5-min mean 5.74 �1.36 31.96 �1.24
PVLIBc 76.40 �62.45 76.40 �62.45

a DNIcs recalculations are based on the averaged TL factors derived from DNIcs.
b DNIcs estimations are based on the estimated TL factors from the ML (MLP)

model developed from the derived TL.
c PVLIB uses the daily interpolated TL based on the monthly climatological TL map.
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For partially cloudy days, the proposed DNIcs estimating method
also outperforms PVLIB, but the degree of error reduction is smaller
than those of GHIcs estimation, as demonstrated by Fig. 13. In sum,
DNIcs estimation is more challenging than GHIcs and often has
larger discrepancies, the applications that rely heavily on accurate
DNIcs estimation is recommended to adopt the methods to
improved DNIcs estimation (such as the one presented in this
work).
269
3.4. Generic applicability of the proposed method

Here we apply the proposed methodology at other SURFRAD
stations with limited occurrences of clear-sky days to demonstrate
the generic applicability of the proposed method. The results of 1-
min averaged GHIcs estimation for all the SURFRAD stations using
the TL estimation models developed using both clear-sky and
partially clear days are presented in Table 4. Compared with the
default PVLIB calculations, the proposed method generally pro-
duces better GHIcs estimations for all SURFRAD stations.

4. Conclusions

In this work, we present a new method to estimate turbidity
factor TL using common meteorological data by ML algorithms. The
model inputs are: the default PVLIB TL, ambient air temperature,
relative humidity (and its logarithm), wind speed, atmospheric
pressure, day of year (DOY), and estimated precipitable water. The
model output is estimated TL, which has the same temporal reso-
lution as the input parameters. The training target of the ML al-
gorithms is the TL derived from measured clear-sky GHI or DNI.
When tested using data fromDesert Rock, Nevada, the newmethod
successfully captures both the short-term and the long-term tem-
poral variations of TL by inferring from the local meteorological



Fig. 12. The comparison of DNIcs estimation based on derived and estimated daily TL factors. (a) RMSE of DNIcs estimation. (b) MBE of DNIcs estimation. Generally, the estimated TL
performs better than the default PVLIB TL factor in terms of RMSE and MBE.

Fig. 13. DNI and GHI time series in partially cloudy days during (a) 2019-03-30 (b) 2029-12-27 (c) 2020-03-31 (d) 2020-04-03. Compared with DNIcs estimation in partially cloudy
days, GHIcs estimated from improved TL factor has higher accuracy in the clear-sky instants.
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Table 4
Results of 1-min averaged GHIcs estimations using estimated TL for clear-sky and partially clear days in 2019 for all the SURFRAD stations. PVLIB results from default TL are
presented in brackets for reference.

Stations Clear-sky days Partially clear days Clear-sky and partially clear days

nRMSE [%] nMBE [%] nRMSE [%] nMBE [%] nRMSE [%] nMBE [%]

BON 3.81 (10.68) �1.90 (�9.08) 3.16 (9.24) �0.96 (�7.80) 3.38 (9.16) �0.37 (�7.58)
DRA 1.42 (4.09) �0.20 (�3.33) 1.48 (3.79) �0.17 (�3.02) 1.52 (3.80) �0.13 (�2.99)
FPK 2.90 (7.03) �1.91 (�4.83) 2.53 (5.32) �0.78 (�2.97) 2.62 (5.09) �0.48 (�2.59)
GWN 3.10 (8.52) �1.19 (�7.52) 3.12 (7.06) �0.64 (�5.27) 3.24 (7.00) �0.44 (�4.97)
PSU 1.73 (8.47) �0.28 (�7.81) 2.29 (7.01) �0.25 (�6.07) 2.62 (7.11) �0.35 (�6.04)
SXF 1.69 (7.24) �0.09 (�6.66) 2.85 (6.13) �0.03 (�5.01) 3.05 (6.29) �0.16 (�5.14)
TBL 2.50 (2.73) 1.15 (�0.75) 2.37 (2.45) 1.40 (�0.47) 2.63 (2.66) 1.39 (�0.24)
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measurements, thus leading to substantial accuracy improvement
in estimating clear-sky irradiance. The major findings and recom-
mendations are:

C We perform TL estimation on the averaging basis of a day, an
hour and every 5-min. Although 5-min averaged TL can
better represents its temporal variation, using daily or hourly
averaged TL to estimate GHIcs or DNIcs has no significant
reduction in accuracy. Therefore, we recommend using the
improved daily-averaging TL (with less complexity and less
computational resource requirement) for GHIcs or DNIcs
estimations.

C Although the default Ineichen-Perez clear-sky model uses
the same turbidity factor for GHIcs and DNIcs estimations,
we found that using the same values would deteriorate
DNIcs estimation. Therefore, we recommend using two
separately trained ML models to generate different TL values,
one for GHIcs estimation and one for DNIcs estimation.

C During clear days, when compared with the default PVLIB TL,
the RMSE of GHIcs estimation based on the improved daily TL
decreased from 24.02 W m�2 to 9.94 W m�2, a 58.6%
reduction of error. The RMSE of DNIcs estimation is reduced
from 76.40 W m�2 to 29.96 W m�2, a 60.8% reduction of
error. The default PVLIB generally underestimates the GHIcs
and DNIcs with anMBE of�20.48Wm�2 and�62.45Wm�2,
respectively. The bias are correctedwhen using the improved
daily TL, yielding anMBE of 2.09Wm�2 for estimating GHIcs,
and 2.68 W m�2 for estimating DNIcs, respectively.

C The daily TL estimation method is also tested in partially
cloudy days (with partial clear periods and partial cloudy
periods). It is observed that the corresponding GHIcs and
DNIcs estimations show better agreement with clear-sky
irradiance measurements during cloudless time instances,
when compared with default PVLIB results. The results
indicate that the presence of clouds does not significantly
change local air temperature and relative humidity, as well as
water vapor and aerosol concentrations. Furthermore, the
results demonstrate the potential of the proposed method in
assisting solar irradiance modelling and forecasting in
partially cloudy conditions, especially for cloud identification
applications.

In sum, our proposed method offers a simpler way for TL esti-
mation without priori knowledge of aerosol and water vapor con-
tent in the atmosphere. The estimated TL can substantially improve
the accuracy of clear-sky GHI and DNI estimations when used in an
empirical clear-sky model. Our results also imply that local mete-
orological data such as air temperature and relative humidity can
represent column water vapor and aerosol concentrations with
high accuracy during both clear and partially cloudy days. Solar
resourcing and forecasting applications are expected to be
271
improved when the proposed method is used to estimate clear-sky
irradiance with higher accuracy.
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