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A B S T R A C T

To fully exploit the spectral information of modern geostationary satellites, this work proposes a deep learning
framework using convolutional neural networks (CNNs) and attention mechanism for 5-min ground-level global
horizontal irradiance (GHI) and direct normal irradiance (DNI) estimations. The inputs are spectral satellite
images with the target ground station in the center, and the labels are irradiance measurements normalized
by their clear-sky estimations. The use of CNNs and attention mechanism aims to better extract the spatial
information for estimating ground-level solar irradiance. To improve the modeling efficiency, only a subset of
spectral bands is selected based on correlation analysis, which has comparable performance with the usage
of all satellite bands. The results show that the proposed method produces GHI estimation with a normalized
root mean squared error (nRMSE) of 20.57% and a normalized mean bias error (nMBE) of −2.04%, and the
DNI estimation has an nRMSE of 23.63% and the nMBE is 0.36%. Compared with the national solar radiation
database (NSRDB), GHI and DNI estimations of the proposed method has the nRMSE reduction of 5.15% and
13.77%, respectively. Meanwhile, the proposed models generally yield better GHI and DNI estimations under
different intervals of clear-sky index than NSRDB. The combination of deep learning and remote sensing shows
potential in better extracting the cloud information via multispectral satellite images, which can better support
solar resource assessment, especially for cloudy conditions.
1. Introduction

Climate change, carbon neutrality and net zero emissions have
drawn unprecedented attention worldwide among the energy-related
industry and academia over the past decade [1]. Many countries have
introduced their national energy policies and plans to reach the global
climate goals [2]. Under such a blueprint, the rapid expansion and
integration of renewable energy sources into current power systems
in a near future could be foreseen [1]. It is predicted that the global
electricity capacity of renewables will rise more than 60% between
2020 and 2026 [3]. Solar energy, as a promising candidate with world-
wide potential, is set to be one of the primary power sources to enable
the deep decarbonization in the energy sector. Despite the variability
and intermittency, both solar photovoltaic (PV) and concentrated solar
power (CSP) are important components on the pathway towards net
zero emissions [4,5]. The power production of solar PV or CSP is
heavily related to the available solar irradiance, i.e., global horizontal
irradiance (GHI) and direct normal irradiance (DNI), at the location
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of interest [6]. That said, as long as solar energy is involved in the
roadmap to carbon neutrality, the need for solar resource assessment
and forecasting is essential in supporting solar energy projects [2,7].

The uncertainty and intermittency of local irradiance leads to high
variability in the power output of solar energy projects, which also
introduces challenges in the system operation [8–10]. Solar resource
assessment aims to support the feasibility study and optimal design
of solar energy projects by projecting power demand and supply po-
tentials, analyzing techno-economic viability and minimizing the long-
term risks [2,6,11]. Ground irradiance measurements with careful cal-
ibrations are the most accurate data source in solar resource assess-
ment. However, complete and long-term on-site measurements are
not available at most locations due to associated technical and finan-
cial issues [12,13]. Even though ground irradiance measurements are
invaluable, their limited data availability greatly hinders the wider
application [14]. On the other hand, the irradiance estimation and
retrievals via remote sensing provide an alternative in the evaluation
and design of solar energy projects [12,15].
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Satellite-to-irradiance algorithms can be broadly grouped as phys-
ical methods that based on radiative transfer and statistical meth-
ods [11,16]. The physical solar model used in the National Solar
Radiation Database (NSRDB) [17] and Heliosat −4 method [18] are
the representatives of physical models, where the detailed interactions
between solar radiation and atmospheric compositions are simulated
using radiative transfer models (RTMs). The essential atmospheric in-
puts such as cloud properties, aerosol optical depth (AOD), and water
vapor content can be obtained from geostationary satellites [17,18],
for instance, Geostationary Operational Environmental Satellite (GOES)
and Meteosat Second Generation (MSG) satellites. Of statistical models,
the pure empirical methods are of limited applications due to the infe-
rior performance and lack of generality [11]; Semi-empirical methods
rely on separate attenuation processes of cloud and other constituents
in the atmosphere. Physical models are generally have better perfor-
mance with more complexity, while semi-empirical models are easier
to implement with a compromised performance. Both physical and
semi-empirical methods show large uncertainties in estimating solar
irradiance under cloudy conditions [19].

As the ground-truth in validating solar irradiance models, on-site
measurements are of great importance [20]. Moreover, the local qual-
ified observations in just a short period could be used in the processes
to get long-term modeled data, for instance, site adaptation [21], and
machine learning based models [22–24]. Given the high temporal
and spatial information provided by the new generation satellites and
the advancements in machine learning algorithms, the combination of
machine learning (especially deep learning) and remote sensing, as
an optimized statistical method, brings new insights in reducing the
uncertainties of solar irradiance modeling [15,25–27]. Lu et al. [28]
applied all the bands of Multi-functional Transport Satellite (MTSAT)
for daily GHI estimation with the aim to fully exploit the information of
visible and infared channels. Jiang et al. [25] proposed a deep learning
algorithm based on convolutional neural network (CNN) and multilayer
perception (MLP) for hourly GHI estimation using images from visible
channel of MTSAT, in an attempt to reduce the spatial effects related
to the approximation of an independent pixel. Verma and Patil [29]
presented a machine learning method for solar radiation assessment
using pixels of multispectral Meteosat satellite images for the target
location. Similarly, the iterative random forest model was adopted for
estimating half-hourly global, direct, and diffuse components of solar
irradiance using GOES-16 data and some viewing geometrical parame-
ters [30,31]. Rocha and Santos [32] reported a deep learning network
based on CNN and long short-term memory (LSTM) network for GHI
and DNI estimation using GOES-16 imagery of all channels. However,
the developed model could not produce better GHI estimation than
NSRDB, while the improvement of DNI estimation remains limited.

To further exploit the application of new-generation geostationary
satellite with much finer spatiotemporal resolution (i.e., 2 km and
5 min) in solar resource assessment, this work proposes a deep learning
model with attention layer for high-resolution (5 min) GHI and DNI
estimations. It is expected that the data with high spatiotemporal
resolution and high accuracy can provide better resource information
for designing solar energy projects, as it better captures the variability
of solar irradiance [33]. Instead of using all spectral satellite bands, a
correlation analysis is performed to select representative bands, which
can improve the modeling efficiency and thus be beneficial for large-
scale applications. To address the spatial effects such as nonlocal cloud
shadows, multispectral images are applied as the input rather than
single pixels. The major contributions of this work are summarized as
follows:

• A correlation analysis is applied to select the representative satel-
lite spectral bands, which can reduce the modeling complexity
for satellite-to-irradiance mapping. This method is also beneficial
for large-scale applications that involve long time periods and/or
2

large areas of interest.
• The application of attention mechanism [34] and spectral satellite
images around the target location aims to better account for
the nonlocal cloud effect, which can improve the accuracy of
irradiance estimations by deep learning.

• The estimates of 5 min GHI and DNI are benchmarked with
NSRDB and show improved overall accuracy. Considering that
NSRDB represents the state-of-the-art in satellite-to-irradiance
methods, the improvements in irradiance estimations might bring
more benefits to the solar community.

• Further evaluations and error analysis of irradiance estimations
are performed to identify the sources of error and potential ways
for future improvements.

The remainder of this paper is structured as follows: Section 2
describes the data and the methods for solar irradiance estimations.
The performance of the proposed model for solar irradiance estimation
and the comparisons with other models are presented in Section 3.
Section 4 details the explanation and implication of the results. Finally,
key findings are summarized in Section 5.

2. Data and methods

This section describes the used data and the deep learning method
for estimating ground-level solar irradiance (i.e., GHI or DNI). As
shown in the flowchart (see Fig. 1), the GOES-16 data of all bands are
extracted from publicly available source. Then the cropped images for
a location centered in the region of 11 × 11 pixels are pre-processed
to be consistent in temporal and spatial resolutions. Images of selected
bands from the correlation analysis are the inputs of the deep learning
model, while the labels are clear-sky indexes obtained from irradiance
measurements and Ineichen-Perez clear-sky model [35,36]. The trained
model is applied for estimating clear-sky index via new input data
of GOES-16, and the solar irradiance estimation is obtained using the
estimated clear-sky index and Ineichen-Perez clear-sky irradiance. Note
that the methodologies for estimating GHI and DNI are the same, but
deep learning models should be developed separately. The detailed
descriptions of the used data and method are presented in the following
subsections.

2.1. Data

The data used in this work mainly includes spectral satellite im-
ages of GOES-16 and ground-level irradiance measurements from the
Surface Radiation Budget Network (SURFRAD) stations [37]. GOES-
16 (75.2◦ West), as one of the GOES-R series, is operated by National
Oceanic and Atmospheric Association (NOAA). The Advanced Baseline
Imager (ABI) has 16 spectral bands, which provide data with much finer
temporal and spatial resolutions compared to the previous generations.
The detailed information of each spectral band is presented in Table 1.
5 min spectral satellite measurements of all the 16 spectral bands in
the year of 2019 are downloaded, which are then extracted as images
and georeferenced to the target ground locations. The spectral satellite
images are in the size of 11 × 11 pixels, and the target ground station
locates at the center. Note that the spectral bands have different spatial
resolutions as shown in Table 1. The spatial resolution is in the range
of 0.5–2 km at the sub-satellite point, and spectral bands with better
resolutions are therefore re-scaled to 2 km. The end timestamp of
each scan in Coordinated Universal Time (UTC) is used to index the
images after rounded to the next nearest 5 min interval. This is for
the compatibility with ground irradiance measurements and real-time
applications. Sample spectral images for one of the target locations are
presented in Fig. 2, where the images have a size of 11 × 11 pixels and
a spatial resolution of 2 km.

The ground-level irradiance measurements are from SURFRAD sta-

tions, namely, Bondville (BON), Desert Rock (DRA), Fort Peck (FPK),
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Fig. 1. The flowchart of ground-level solar irradiance estimation using deep learning and satellite measurements of GOES-16.
Fig. 2. Sample satellite images including all the spectral bands of GOES-16 for Bondville (40.05◦, −88.37◦) at 2019-01-10 20:45:00 (UTC). The image is in the size of 11 × 11
pixels, where Bondville is located at the center. All the spectral images are normalized to the range of [0,1] using the Min-Max normalization.
Goodwin Creek (GWN), Pennsylvania State University (PSU), Sioux
Falls (SXF), and Table Mountain (TBL) as summarized in Table 2.
Measurements including GHI, DNI, diffuse horizontal irradiance (DHI),
solar zenith angle in 2019 at all the seven stations are obtained after
quality control. Note that DHI is not of interest in this work, however,
it is required in the classification of cloudy and clear periods [38]
for the performance evaluation. All the measurements are in the 1-
min temporal resolution and indexed in UTC time. Due to the high
airmass effect, all the irradiance measurements over the solar zenith
angle of 85◦ are eliminated. Note that the satellite images are in the
time resolution of 5 min, GHI and DNI are therefore aggregated into
the same temporal resolution.

The satellite-derived GHI and DNI provided by NSRDB [39] are
used for comparison to evaluate the performance of the applied deep
learning algorithms. Both GHI and DNI estimations of NSRDB for all the
SURFRAD stations in 2019 are downloaded, with the spatiotemporal
resolution of 2 km and 5 min. As a publicly available data source that
is extensively accessed for solar energy applications, NSRDB is based
on the physical solar model and the reanalysis products from many
other associations [17]. Broadband irradiance including GHI, DNI, and
other auxiliary variables such as cloud type, are available in NSRDB.
Since 2018, the spatiotemporal resolution of NSRDB has been improved
to 2 km and 5 min. Meanwhile, NSRDB represents the state-of-the-art
in the satellite-based estimation of solar irradiance. Considering that
other deep learning satellite-to-irradiance models usually have different
locations of interest and various spatiotemporal resolutions, NSRDB is
selected as the benchmark and its accuracy is validated against ground
measurements [33].
3

2.2. Correlation analysis

In machine learning applications, feature selection is extensively
applied to decrease the dimensionality by eliminating redundant and
irrelevant features [40]. Feature selection has been proved to be help-
ful in understanding data, reducing the complexity, and improving
the learning efficiency as well as predictive performance of machine
learning tasks [40,41]. Typically, feature selection methods can be
grouped as filter and wrapper methods [40]. A filter method usually
assesses the general characteristics of the dataset before the application
of any machine learning algorithms. While a wrapper method requires
a predefined learning algorithm in the process of feature selection, the
features are selected based on the performance of the predetermined
algorithm. Therefore, the wrapper method is more computationally
expensive than the filter method [41].

In general, a good feature is relevant to the target but is not
redundant to any other input features [42]. Feature correlation is
usually applied to describe the similarity and redundancy among the
features [42,43]. A feature is defined to be redundant if it is highly cor-
related with one or more other features [42]. Therefore, a correlation
analysis is performed among the measurements of 16 spectral bands
of GOES-16 to reduce the input size. This can improve the modeling
efficiency, especially for large-regional applications.

One commonly used measure of similarity between two variables
(𝑋, 𝑌 ) is the correlation coefficient 𝑟(𝑋, 𝑌 ), which is defined as

𝑟(𝑋, 𝑌 ) =
∑

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√

∑

√

∑

(1)

(𝑥𝑖 − 𝑥)2 (𝑦𝑖 − 𝑦)2
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Fig. 3. Correlation coefficients between measured radiance data of the 16 spectral bands of GOES-16 at (a) BON and (b) All SURFRAD stations.
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Table 1
The detailed information of the ABI spectral bands of GOES-16.

Band 𝜆 [μm] Center 𝜆[μm] Resolution[km] Nickname Type

1 0.45–0.49 0.47 1 Blue Visible
2 0.59–0.69 0.64 0.5 Red Visible
3 0.846–0.885 0.865 1 Veggie Near-Infrared
4 1.371–1.386 1.378 2 Cirrus Near-Infrared
5 1.58–1.64 1.61 1 Snow/Ice Near-Infrared
6 2.225–2.275 2.25 2 Cloud particle size Near-Infrared
7 3.80–4.00 3.90 2 Shortwave window Infrared
8 5.77–6.60 6.19 2 Upper-level water vapor Infrared
9 6.75–7.15 6.95 2 Mid-level water vapor Infrared
10 7.24–7.44 7.34 2 Lower-level water vapor Infrared
11 8.30–8.70 8.50 2 Cloud-top phase Infrared
12 9.42–9.80 9.61 2 Ozone Infrared
13 10.10–10.60 10.35 2 ‘‘Clean’’ longwave window Infrared
14 10.80–11.60 11.20 2 Longwave window Infrared
15 11.80–12.80 12.30 2 ‘‘Dirty’’ longwave window Infrared
16 13.00–13.30 1.378 2 CO2 longwave Infrared
Table 2
Detailed information of the seven SURFRAD stations. The climate is based on Köppen classifications. The elevation angle and azimuth angle are from the station to GOES-16, and
the azimuth angle starts from the North (0◦).

Station Latitude (◦) Longitude (◦) Altitude (m) Climate* Elevation (◦) Azimuth (◦)

BON 40.05 −88.37 230 Dfa 41.7 160.0
DRA 36.62 −116.02 1007 Bwk 29.9 124.6
FPK 48.31 −105.10 634 Bsk 47.2 155.0
GWN 34.25 −89.87 98 Cfa 27.5 142.4
PSU 40.72 −77.93 376 Dfb 42.8 175.8
SXF 43.73 −96.62 473 Dfa 35.2 150.4
TBL 40.12 −105.24 1689 Bsk 34.3 138.1

* Köppen climate classifications are: Bsk (arid, steppe, cold), Bwk (arid, desert, cold), Cfa (temperate, without dry season, hot summer), Dfa (continental, without dry season, hot
summer), Dfb (continental, without dry season, warm summer).
where (𝑥𝑖, 𝑦𝑖) are the paired data of (𝑋, 𝑌 ), 𝑥 and 𝑦 are the means of 𝑋
and 𝑌 , respectively. The value of 𝑟(𝑋, 𝑌 ) is inclusively between −1 and
1, with the value of 1 or −1 indicating 𝑋 and 𝑌 are totally correlated.
When 𝑋 and 𝑌 are completely independent, the value of 𝑟(𝑋, 𝑌 ) is 0.

The correlation analysis result for 16 spectral bands of GOES-16 is
shown in Fig. 3. Fig. 3(a) presents the correlation coefficients of the
16 spectral bands at BON. There are some bands highly correlated, for
instance, the coefficient of C12 and C13 is 1.00. Correlation analysis
of GOES-16 bands at other SURFRAD stations have similar results,
the overall coefficients involving all SURFRAD stations are shown in
Fig. 3(b). Note that the correlation analysis is based on the satellite
measurements at the target location with the pixel size of 1 × 1.
When using more pixels, for example, 3 × 3 or 5 × 5, there are
limited differences using averaged satellite measurements. It is shown
in Fig. 3 that 𝑟(𝑋, 𝑌 ) = 𝑟(𝑌 ,𝑋) and 𝑟(𝑋,𝑋) = 1.00. A threshold of
0.95 is predefined to select the representative bands. In specific, if
the coefficient of two channels is greater than 0.95, one of them is
selected to represent the other. It is necessary to mention the selection
of representative band for C08, C09, and C10. Since 𝑟(C08,C09) and
𝑟(C09,C10) are above the threshold, while 𝑟(C08,C10) is below it, C09 is
selected to represent both C08 and C10. As a result, the selected bands
are C01, C03, C04, C05, C06, C07, C09, and C11.

2.3. Deep learning model

With the improvement of computational ability and the advance-
ment of learning algorithms, deep learning has attracted increasing
attention in solar resource assessment and forecasting in the past
decade [25,44]. Deep learning introduces simper but more efficient
representations that provide capabilities to build complex concepts in
representation learning. Meanwhile, the depth of deep neural network
(DNN) enables the multistep sequential instructions, which offer great
power and flexibility in modeling complicated problems [45]. Different
DNN structures have been proposed for solar irradiance modeling
referring satellite and sky images [25,46,47].
5

The deep learning model proposed in this study employs convolu-
tional, attention, and four fully connected dense layers as shown in
Fig. 4. In specific, CNNs provide specialized neural networks to deal
with data with a grid-structured topology such as images. Compared
with fully connected networks, CNNs are more computationally effi-
cient and easier in implementation and hyperparameters tuning [45].
As feed-forward neural networks, CNNs are powerful in extracting
properties of input images, which can capture the features efficiently
and reduce the amount of parameters. Convolutional layer is the core
block of CNNs to discover local relationships via sparse connectivity,
parameter sharing and equivariant representations [45]. An activation
function (e.g., ReLU) is usually applied on the linear convolution
results to introduce non-linearity on the output feature maps. While
the pooling layer is to extract representative characteristics over lo-
cal regions and reduce the dimension gradually [45]. The attention
layer is based on attention mechanism [34] that has been extensively
adopted in different applications such as image analysis including
satellite images [48]. The attention mechanism can process perceptual
information efficiently and accurately, by focusing on the target area
and suppressing other useless content [49]. Similarly, the attention
mechanism in deep learning is to enable the model focus on the features
that are more important to the current output [44], which can improve
the performance of the model. While the dense layers are employed to
learn the representations between the extracted input features and the
targets.

The cropped satellite images of 8 selected GOES-16 bands are the
inputs for the deep learning model based on Tensorflow [50]. As shown
in Fig. 4, 8 images are processed parallelly via normalization, convo-
lutional and attention layers. The extracted features of each image are
then flattened and concatenated as the input vector of the four fully
connected dense layers. The ReLU activation is applied in convolutional
and dense layers, and the L2 regularization is to avoid over-fitting and
improve the performance. The output is the clear-sky index, which is
defined as the ratio between measured GHI and clear-sky GHI estimate.
Clear-sky index is used to normalize the irradiance time series and
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Fig. 4. The structure of deep learning model for estimating ground solar irradiance using the GOES-16 images of selected bands. The inputs are images of 8 selected bands with
size of 11 × 11 pixels, the output is the clear-sky index. Note that the hyperparameters might vary for different locations, this figure is just to show the structure.
Fig. 5. The loss curves of training and validation process for GHI estimation at BON.

reduce the seasonal and diurnal variations. Note that the clear-sky
index is defined based on GHI. However, when developing the deep
learning model for DNI estimation, the concept of clear-sky index is
also adopted for DNI measurements and clear-sky DNI. Clear-sky GHI
and clear-sky DNI are estimated by the Ineichen-Perez model [35] due
to the simplicity. Although the Ineichen-Perez model has compromised
performance in estimating clear-sky irradiance [51,52], the impact on
the final irradiance estimation remains limited as the estimated clear-
sky index is converted back to irradiance components (i.e., GHI and
DNI) by multiplying the clear-sky irradiance [53].

To better represent the yearly variations, data in March, June,
September, and December are used for testing, while the data in the
remaining months in 2019 are used as training and validation sets (in
which 20% of the data is used for validation). Adam is the applied
optimizer and the Huber loss function is used to update the network
parameters. The numbers of layers and units, the numbers of filters and
kernel size, and other hyperparameters such as learning rate and reg-
ularization factor are optimally selected by grid search. In training the
deep learning model, the Xavier initialization method [54] is employed.
After obtaining the optimal hyperparameters, many independent train-
ings are conducted with data shuffling. In the end, the model with the
best performance on the validation data is selected. Fig. 5 presents one
of the loss curves during the training and validation process for GHI
estimation at BON.

The error evaluation metrics are root mean squared error (RMSE),
mean bias error (MBE), and their normalized counterparts (nRMSE,
6

nMBE) defined by the following equations:

RMSE =
√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

nRMSE =

√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

1
𝑁

∑

𝑜𝑖

MBE = 1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)

nMBE =
∑

(𝑒𝑖 − 𝑜𝑖)
∑

𝑜𝑖
where 𝑒𝑖 and 𝑜𝑖 are the pair of irradiance estimation and ground
observation (i.e., GHI or DNI), 𝑁 is the total number of compared data
points.

3. Results

To evaluate the effectiveness of satellite bands selection from cor-
relation analysis, we compare the performance of GHI and DNI esti-
mations based on the proposed deep learning network (without the
attention layer) using satellite images of 16 bands (referred as DNN16
model) and 8 selected bands (referred as DNN8 model). Similarly, to
assess the application of attention mechanism in processing satellite
images, the results of deep learning model with attention layer (referred
as DNNa8 model) are also included in the comparisons in Section 3.1,
where the reference is the irradiance estimations from NSRDB. As
clouds are the dominant factor affecting the available solar irradiance
on the ground level, the comparisons of irradiance estimations of the
deep learning model and NSRDB are detailed in clear and cloudy
periods in Section 3.2. While a further error analysis of irradiance
estimation within different clear-sky index intervals is presented in
Section 3.3.

3.1. Comparison of different deep learning networks for irradiance estima-
tions

The irradiance estimation results at SURFRAD stations are presented
in Table 3 (for GHI) and Table 4 (for DNI). It is shown in Table 3
that deep learning models for GHI estimations using 16 satellite bands
(DNN16) and 8 selected bands (DNN8) have comparable overall perfor-
mance. DNN16 generates GHI estimations at all the SURFRAD stations
with the nRMSE of 20.62% and nMBE of 0.72%, while DNN8 yields
a result with slightly larger discrepancies, the nRMSE is 21.17% and
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Table 3
The RMSE and MBE in [W m−2], and nRMSE and nMBE in [%], of GHI estimation using different deep learning models at SURFRAD stations. The GHI estimation error of NSRDB
s included as the benchmark.

DNN16a DNN8b DNNa8c NSRDB

RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE)

BON 89.34 (23.65) 7.53 (1.99) 91.66 (24.26) 8.20 (2.17) 89.13 (23.59) −9.27 (−2.45) 97.81 (25.89) −1.28 (−0.34)
DRA 64.64 (12.65) −5.19 (−1.02) 64.80 (12.68) −4.62 (−0.90) 66.67 (13.04) 2.83 (0.55) 86.02 (16.83) −5.05 (−0.99)
FPK 84.44 (22.40) 6.04 (1.60) 87.55 (23.23) −9.43 (−2.50) 88.65 (23.52) 0.50 (0.13) 105.05 (27.87) −1.10 (−0.29)
GWN 85.60 (19.30) 9.78 (2.21) 87.88 (19.82) −14.42 (−3.25) 88.76 (20.02) −27.58 (−6.22) 107.08 (24.15) 0.18 (0.04)
PSU 97.00 (25.73) 18.97 (5.03) 97.18 (25.78) −7.35 (−1.95) 91.13 (24.17) −10.47 (−2.78) 123.42 (32.73) 6.45 (1.71)
SXF 79.57 (20.75) −15.71 (−4.10) 84.72 (22.09) −22.12 (−5.77) 80.33 (20.95) −13.16 (−3.43) 103.12 (26.89) 19.59 (5.11)
TBL 95.84 (22.53) −0.66 (−0.15) 98.81 (23.22) −8.75 (−2.06) 92.33 (21.70) −1.91 (−0.45) 121.47 (28.55) −0.56 (−0.13)
ALL 85.78 (20.62) 2.98 (0.72) 88.05 (21.17) −8.18 (−1.97) 85.55 (20.57) −8.50 (−2.04) 106.96 (25.72) 2.43 (0.58)

a ‘DNN16’ means DNN with inputs of all the 16 channels.
b ‘DNN8’ means DNN with inputs of the 8 selected channels.
c ‘DNNa8’ means DNN with attention layer using the 8 selected channels.
Table 4
The RMSE and MBE, in [W m−2], nRMSE and nMBE in [%], of DNI estimation using different deep learning models at SURFRAD stations. The DNI estimation error of NSRDB is
ncluded as the benchmark.

DNN16a DNN8b DNNa8c NSRDB

RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE)

BON 148.26 (26.25) 33.30 (5.90) 143.01 (25.32) 22.45 (3.98) 143.70 (25.44) −1.07 (−0.19) 214.61 (38.00) 40.72 (7.21)
DRA 124.35 (17.05) 22.69 (3.11) 122.89 (16.85) 19.05 (2.61) 119.28 (16.36) 24.66 (3.38) 185.50 (25.44) 1.75 (0.24)
FPK 178.43 (29.13) −2.18 (−0.36) 174.16 (28.43) 29.10 (5.64) 165.76 (27.07) −13.32 (−2.18) 256.06 (41.81) 40.53 (6.62)
GWN 129.80 (22.40) −23.11 (−3.99) 133.64 (23.06) −27.88 (−4.81) 123.81 (21.37) 3.88 (0.67) 200.48 (34.60) 40.12 (6.92)
PSU 163.44 (29.90) −28.28 (−5.17) 165.87 (30.34) −30.22 (−5.53) 161.80 (29.60) 5.09 (0.93) 245.39 (44.89) 50.07 (9.16)
SXF 147.58 (25.68) 21.84 (3.80) 149.16 (25.95) 19.43 (3.38) 143.46 (24.96) −6.33 (−1.10) 253.93 (44.18) 73.79 (12.84)
TBL 156.15 (25.90) −6.82 (−1.13) 156.45 (25.95) −11.80 (−1.96) 154.95 (25.70) −7.36 (−1.22) 247.34 (41.02) 37.57 (6.23)
ALL 148.69 (24.43) 3.24 (0.53) 148.26 (24.36) 2.66 (0.44) 143.84 (23.63) 2.20 (0.36) 227.61 (37.40) 38.04 (6.25)

a ‘DNN16’ means DNN with inputs of all the 16 channels.
b ‘DNN8’ means DNN with inputs of the 8 selected channels.
c ‘DNNa8’ means DNN with attention layer using the 8 selected channels.
i

the nMBE is −1.97%. When it comes to DNI estimation (see Table 4),
the overall results of DNN16 and DNN8 also have limited differences.
In specific, the result of DNN16 for DNI estimation has an nRMSE of
24.43% and an nMBE of 0.53%, while DNN8 produces a slightly better
result with the nRMSE of 24.36% and the nMBE of 0.44%.

The integration of attention mechanism generally can improve the
irradiance estimations. As shown in Tables 3 and 4, the overall GHI
estimation of DNNa8 has a lower nRMSE value of 20.57% than DNN8
(nRMSE of 21.17%), while the nMBE is almost the same (−2.04%
s −1.97%); The DNNa8 model also yields better DNI estimations
ompared with DNN8, the overall nRMSE is improved from 24.36%
o 23.63%, and the nMBE is reduced from 0.44% to 0.36%.

Compared with the GHI and DNI estimations from NSRDB, deep
earning based models show substantial improvements as shown in
ables 3 and 4. GHI estimation using DNNa8 reduces the nRMSE by
.15% from 25.72% to 20.57%, while the bias turns to be enlarged
rom 0.58% to −2.04%. While for DNI estimation, deep learning models
how more aggressive improvements. The nRMSE is reduced from
7.40% to 23.63% (a 13.77% reduction) using the DNNa8 model, and
he bias decreases from 6.25% to 0.36%.

.2. Comparison under clear and cloudy sky conditions

Since the cloud is the primary atmospheric constitute affecting the
vailable solar irradiance on the ground level, solar resource assess-
ent under cloudy sky conditions is generally associated with larger
ncertainties in both semi-empirical and physical satellite-based meth-
ds [19]. Therefore, it might be of interest to evaluate the performance
f deep learning based model for solar irradiance (i.e., GHI and DNI)
7

estimation under cloudy and clear sky conditions that are based on
Bright-Sun clear-sky detection algorithm [38].

The overall performance of GHI and DNI estimations using deep
learning model (DNNa8) and physical solar model (NSRDB) are pre-
sented in Tables 5 and 6. As shown in Table 5, GHI estimation of
DNNa8 has larger discrepancies than NSRDB in clear sky periods. In
specific, DNNa8 has a RMSE of 39.88 W m2 and a MBE of −9.78 W m2,
while the RMSE and MBE of NSRDB are 27.09 W m2 and 2.15 W m2,
respectively. In cloudy sky periods, GHI estimates of DNNa8 show
better performance than NSRDB in terms of nRMSE with the reduction
of 6.92% from 32.48% to 25.56%, while the bias becomes larger from
0.68% to −2.22%. As for DNI estimation (see Table 6), DNNa8 typically
shows better results than NSRDB with the exception of a larger bias in
clear sky periods. Compared with NSRDB for estimating DNI in clear
skies, DNNa8 reduces the RMSE from 85.43 W m2 to 73.55 W m2, while
the MBE is enlarged from −12.28 W m2 to −20.23 W m2. When the sky
s cloudy, the DNI estimation of NSRDB has a RMSE of 263.85 W m2

and the MBE is 58.17 W m2. DNNa8 yields an estimation with the
errors of RMSE and MBE decreased to 163.73 W m2 and 11.18 W m2,
respectively. The results of GHI and DNI estimation on some selected
days are presented in Fig. 6 for clear, cloudy, and partially cloudy days.
It is shown that both GHI and DNI of DNNa8 have lower divergences
compared with NSRDB in cloudy periods.

Fig. 7 presents the detailed comparison of GHI estimation at all
SURFRAD stations using deep learning and physical model. Compared
with NSRDB, DNNa8 generally produces lower RMSE in cloudy and all-
sky conditions, while the RMSE value in clear periods is higher. DNNa8
turns to generates comparatively larger negative bias for both clear and
cloudy periods (e.g., BON, GWN, and PSU). The site-specific compar-
ison of DNI estimation is shown in Fig. 8. Generally, deep learning
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Table 5
The comparison of GHI estimation results under clear and cloudy periods at all SURFRAD stations using deep learning (DNNa8) and physical
solar model (NSRDB).

DNNa8 NSRDB

RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%] RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%]

Clear periods 39.88 6.65 −9.78 −1.63 27.09 4.52 2.15 0.36
Cloudy periods 93.94 25.56 −8.16 −2.22 119.40 32.48 2.50 0.68
All periods 85.55 20.57 −8.18 −2.04 106.96 25.72 2.43 0.58
Table 6
The comparison of DNI estimation results under clear and cloudy periods at all SURFRAD stations using deep learning (DNNa8) and physical
solar model (NSRDB).

DNNa8 NSRDB

RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%] RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%]

Clear periods 73.55 8.40 −20.23 −2.31 85.43 9.76 −12.28 −1.40
Cloudy periods 163.73 32.62 11.18 −2.22 263.85 52.59 58.17 11.59
All periods 143.84 23.63 2.20 0.36 227.61 37.40 38.04 6.25
Fig. 6. GHI and DNI estimation results on some selected days at BON and DRA. (a) and (d) are on clear days, (b) and (e) are on cloudy days, while (c) and (f) are for partially
cloudy days.
model outperforms the physical model in cloudy sky conditions with
lower values of RMSE and MBE. Similarly, DNNa8 is more likely to
yield DNI estimation with larger biases in clear periods.

3.3. Error analysis

To further evaluate the results of solar irradiance estimations using
deep learning based method, we herein compare the performance with
physical model in NSRDB within different clear-sky index intervals
based on the Ineichen-Perez model. Since the intervals of clear-sky
index are determined for GHI and DNI separately, the error analysis
8

is performed in each clear-sky index intervals for both GHI and DNI
estimations. Note that the use of other clear-sky models, e.g., Mc-
Clear [55] or REST2 [56] has similar results, as the aim is to evaluate
the performance of GHI and DNI estimations under various conditions.

A detailed comparison of GHI estimation in different clear-sky index
intervals at all SURFRAD stations is presented in Fig. 9. Generally,
DNNa8 is more likely to produce GHI estimation with lower discrepan-
cies (also see Fig. A.1 for the joint and marginal distributions for GHI
measurements and estimations, and Fig. A.2 for error distributions).
Both DNNa8 and NSRDB generate overestimation in the conditions

of low clear-sky index and underestimation when the clear-sky index



Applied Energy 352 (2023) 121979S. Chen et al.

i
F
G

c
b
l
D

Fig. 7. The comparison of GHI estimation using deep learning (DNNa8) and physical solar model (NSRDB) under clear, cloudy, all-sky conditions at all SURFRAD stations.
Fig. 8. The comparison of DNI estimation using deep learning (DNNa8) and physical solar model (NSRDB) under clear, cloudy, all-sky conditions at all SURFRAD stations.
s high, especially when the clear-sky index exceeds 1.2 as shown in
ig. 9. Moreover, DNNa8 and NSRDB also exhibit high divergences in
HI estimation when the clear-sky index is higher than 1.2.

Fig. 10 presents the comparison of DNI estimation in different
lear-sky intervals at all SURFRAD stations. The overall trend is that
oth deep learning and physical model yield DNI estimations with
ower RMSE values when the clear-sky index increases. Meanwhile,
NI is generally overestimated when the clear-sky index is low and
9

underestimated for high clear-sky indexes, the bias exhibits a linear
approximation and decreases from positive to negative with the in-
crease of clear-sky index. Despite some on-site variations, for instance,
high RMSE when clear-sky index exceeds 1.2 (i.e., DRA and FPK),
larger divergences of DNNa8 (e.g., at GWN and PSU when clear-sky
index is greater than 1.2), deep learning generally outperforms physical
model (see Fig. A.3 for the joint and marginal distributions for DNI
measurements and estimations, and Fig. A.4 for error distributions).
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Fig. 9. The comparison of GHI estimation using deep learning (DNNa8) and physical solar model (NSRDB) across clear-sky index intervals at all SURFRAD stations. ‘ALL’ means
all the stations are included.
4. Discussion

Based on the results of DNN16 and DNN8, correlation analysis is
effective to select the representative satellite bands to support solar
irradiance modeling. Note that although the results of DNN16 and
DNN08 show some site-specific variations as detailed in Tables 3
and 4, the overall picture is that divergences between DNN16 and
DNN8 remain insignificant. This means the information in the sub-
selected bands is still sufficient to infer the atmospheric compositions
attenuating solar radiation. Therefore, it can reduce the complexity
and improve the efficiency in retrieving solar irradiance using satellite
data, especially for regional applications with long-time period. Sim-
ilarly, based on the results of DNN8 and DNNa8, the attention layer
generally shows positive impact for irradiance estimation. However,
the improvement is not significant. The possible reason is that the
attention mechanism is to extract information on a sub-target area
rather than the whole domain, and the ground station is located on
the centered pixel in relatively small images. Therefore, the attention
mechanism cannot outperform too much than the baseline model.
Since NSRDB employs physical solar model and reanalysis products to
10
simulate the interactions between atmospheric components and solar
radiation. The improvements in both GHI and DNI estimations using
deep learning and satellite images indicate that deep learning may have
the potential to simplify the radiative transfer simulations for solar
resource assessment.

When comparing the results in clear and cloudy periods, DNNa8
generally turns to produce larger biases for GHI estimations in both
clear and cloudy sky conditions and therefore underestimates in the
overall results (see Table 5). Nevertheless, the improvements of deep
learning based model for estimating GHI in cloudy conditions are
noticeable. Consequently, the overall RMSE of all-sky GHI estimation
of DNNa8 is smaller than NSRDB. As for DNI estimation, DNNa8 out-
performs NSRDB for all-sky conditions. Since DNI is more sensitive than
GHI to the attenuating effect of atmospheric constitutes, the estimation
of DNI is more challenging, evidenced by the generally larger variances
and biases produced by both deep learning and physical models (see
Table 6). Deep learning shows a compromised performance for irradi-
ance estimation in clear sky conditions. The possible reason could be
the selected satellite bands are more effective in representing the cloud
properties, while the information of atmospheric aerosol and water
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Fig. 10. The comparison of DNI estimation using deep learning (DNNa8) and physical solar model (NSRDB) across clear-sky index intervals at all SURFRAD stations.‘ALL’ means
all the stations are included.
vapor cannot be extracted as accurately as the reanalysis products
used in NSRDB, especially under clear sky conditions. Nevertheless, the
application of deep learning could improve the overall performance of
solar resource assessment inferring satellite measurements compared to
the physical solar model in NSRDB. The improvements in GHI and DNI
estimations might be beneficial to the solar community.

For the high discrepancies observed in Fig. 9 when clear-sky in-
dex is greater than 1.2, the possible explanation could be the cloud
enhancement effect [57]. Cloud enhancements can cause the GHI to
instantaneously exceed the clear-sky GHI and even the solar con-
stant [9]. As shown in Fig. 11, the measured GHI can be greater than
the projection of extraterrestrial radiation on the horizontal surface
with high fluctuations due to cloud enhancement. Therefore, the clear-
sky index is expected to be greater than 1.0. However, the cloud
enhancement is rather an instantaneous process, satellite sensors might
not be able to capture these phenomena. Satellite-based deep learning
and physical methods could not obtain accurate GHI estimation when
cloud enhancement happens, which is the major contributor for the
relatively larger errors (i.e., underestimation) when the clear-sky index
is greater than 1.2. Meanwhile, deep learning still faces challenges
11
in retrieving DNI via satellite images under cloudy conditions (low
clear-sky index, see Fig. 9), where the errors are comparatively larger.
Although DNI estimation is generally with larger uncertainties, deep
learning shows potential especially in extracting cloud information via
satellite images. To further improve the accuracy of solar irradiance
estimation, cloud enhancements on GHI should be better accounted for.
While for DNI, more sophisticated methods to reveal the cloud affecting
direct solar rays should be developed.

5. Conclusions

The 16 spectral channels of GOES-16 can be used individually or to-
gether to reveal atmospheric characteristics for various applications. In
this work, multispectral GOES-16 images are used for estimating solar
irradiance (i.e., GHI and DNI) by deep learning. After pre-processing,
a correlation analysis is applied to select the representative bands.
The satellite images of selected bands are then used as inputs for
a deep learning model based on convolutional, attention, and dense
layers. Clear-sky indexes are used as the labels for both GHI and DNI
estimation models. The performance of the proposed methods and the
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Fig. 11. The cloud enhancement events at the SURFRAD stations. GHI is the actual measurement, GHI_DNNa8 and GHI_NSRDB are the estimations from the deep learning model
nd physical solar model, respectively. GHI_EX is the extraterrestrial radiation projected on the horizontal surface.
ffectiveness of bands selection are evaluated against the measurements
nd compared with irradiance estimations from NSRDB.

Deep learning models based on 16 spectral bands (DNN16) and 8
elected bands (DNN8) have comparable performance for both GHI and
NI estimations compared to the ground measurements at SURFRAD

tations. This demonstrates the effectiveness of correlation analysis
n selecting representative spectral satellite bands for solar irradiance
stimation. It is more effective to use a subset of satellite spectral bands
o reduce model complexity and computational cost, which is especially
eneficial for large-scale applications.

Furthermore, the integration of attention mechanism in deep learn-
ng (DNNa8) shows improvements in both GHI and DNI estimations.

hen compared with NSRDB, DNNa8 generally produces GHI esti-
ation with lower RMSE in cloudy conditions, but higher RMSE in

loudless skies. Nevertheless, the improvements in GHI estimation un-
er cloudy conditions lead to an overall nRMSE reduction of 5.15%.
imilarly, the overall nRMSE for DNI estimations is reduced from
7.40% to 23.63%, and the bias is improved from 6.25% to 0.36%.
atellite images provide more spatial information (i.e., nonlocal cloud)
round the target location than a single pixel, and the attention mech-
nism enables the model focus on more important features. As a result,
oth GHI and DNI estimations show improvements, especially in cloudy
onditions. This means the attention mechanism might be applicable
or solar irradiance estimation over a larger area given on-site data
vailable.

When comparing DNNa8 and NSRDB in irradiance estimations
cross different ranges of clear-sky index, deep learning models still
how better overall performance in both GHI and DNI estimations.
hat said, both GHI and DNI estimations with improved accuracy via
eep learning might provide more benefits in solar irradiance modeling.
t is necessary to mention that both satellite-based deep learning and
hysical models could not account for the cloud enhancement effects,
here comparatively larger errors are observed for GHI estimation
hen the clear-sky index exceeds 1.2. Although deep learning performs

omparatively better than physical models in extracting cloud infor-
ation, more efforts are still needed for revealing the cloud properties

cross the vertical atmospheric layers.
12
In summary, correlation analysis is effective in selecting repre-
sentative satellite bands to reduce the complexity and improve the
efficiency in solar irradiance estimation. Although deep learning with
attention mechanism provides an alternative for satellite-to-irradiance
methods, there are still some limitations, such as the need of ground
measurements for model development and the incapability in captur-
ing cloud enhancement events. Notwithstanding, the combination of
deep learning and remote sensing shows potential in extracting cloud
information via satellite images. The high spatiotemporal resolution
satellite-to-irradiance data with improved accuracy can better capture
the solar variability, which is beneficial for designing solar energy
projects.
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Appendix

See Figs. A.1–A.4.

Fig. A.1. Joint and marginal distributions for GHI measurements and estimations of DNNa8 and NSRDB at all SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU,
(f) SXF, (g) TBL, (h) ALL. ‘ALL’ means all the stations are included. The colors show 2D kernel densities. GHI estimations of DNNa8 generally show better agreements with GHI
observations than NSRDB.
13
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Fig. A.2. The error distributions for GHI estimations of DNNa8 and NSRDB at all the SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL, (h)
ALL. ‘ALL’ means all the stations are included. The density is a normalized probability density, the error is the difference between DNI estimate and measurement. A gaussian
regression is performed for each distribution. The error of DNNa8 shows a narrower profile compared with NSRDB.
14
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Fig. A.3. Joint and marginal distributions for DNI measurements and estimations of DNNa8 and NSRDB at all SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU,
(f) SXF, (g) TBL, (h) ALL. ‘ALL’ means all the stations are included. The colors show 2D kernel densities. DNI estimations of DNNa8 generally show better agreements with DNI
observations than NSRDB.
15
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Fig. A.4. The error distributions for DNI estimations of DNNa8 and NSRDB at all the SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL, (h)
ALL. ‘ALL’ means all the stations are included. The density is a normalized probability density, the error is the difference between DNI estimate and measurement. A gaussian
regression is performed for each distribution. The error of DNNa8 shows a narrower profile compared with NSRDB.
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