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A B S T R A C T

A transferable turbidity estimation method is proposed for estimating the turbidity and clear-sky solar
irradiance. Instead of using on-site irradiance measurements (i.e., the local model), a transferable model is
developed involving stations with sufficient information, and then applied at locations with limited data
availability. Compared with the local method, the transferable model yields results with slightly higher
discrepancies regrading normalized root mean squared error (nRMSE, 2.80% vs 2.75%). When compared with
the Ineichen–Perez (PVLIB) model, the nRMSE of clear-sky global horizontal irradiance (GHIcs) estimation
is reduced from 4.99% to 2.44%, and the normalized mean bias error (nMBE) is improved from -3.37% to
0.57%. The GHIcs estimation is comparable with physical models (i.e., McClear and REST2), where the McClear
produces a nRMSE of 3.32% and the nMBE is 2.10%, while the REST2 generates results with an nRMSE of
2.55% and an nMBE of 1.30%. We further compare aforementioned models for day-ahead GHIcs forecasts
using a day persistent way. GHIcs forecast from the transferable method has slightly lower discrepancies of
nRMSE and nMBE than the physical models. Considering the complexity of physical models, the transferable
turbidity estimation method with comparable performance demonstrates valuable potential for solar resourcing
and forecasting applications.
1. Introduction

Clear-sky models, which estimate ground-level solar irradiance
under clear-sky (cloudless) conditions, are an important part in so-
lar resourcing and forecasting applications to support solar energy
projects [1–4]. In solar resourcing, the ground solar irradiance, e.g.,
global horizontal irradiance (GHI), can be retrieved from satellite
images using either physical or semi-empirical satellite methods based
on a clear-sky model [1]. The retrieved solar irradiance data can help
with the project feasibility study and optimal system design when
there is no on-site ground irradiance measurement available [1,5,6];
Moreover, clear-sky models are also essential in solar forecasting to
reduce the negative impact on the system operation caused by the
intermittency and variability [1,3,7]. The solar forecasts usually rely on
the clear-sky index (CSI), which has different definitions depending on
the forecasting method. CSI is the ratio of measured GHI and clear-sky
GHI (GHIcs) in a time series forecasting [3]. Meanwhile, CSI can also be
calculated from the cloud index (CI) based on the satellite images [1,4],
which is particularly applied for locations without sufficient solar
irradiance data.

∗ Corresponding author at: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
E-mail address: mengying.li@polyu.edu.hk (M. Li).

In physical-based solar resourcing methods, radiative transfer sim-
ulation is applied through various layers in the atmosphere taking the
advantage of modern satellite remote sensing technologies [2,8]. Where
the physical clear-sky models, e.g., McClear [9] and REST2 [10], are
used to quantify the surface solar irradiance when the sky is free from
clouds. The essential inputs such as aerosol properties, atmospheric pro-
files, and surface albedo can be obtained from a number of reanalysis
products including the Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Copernicus Atmosphere Monitoring
Service (CAMS) reanalysis [2,8]. As a major modulator attenuating the
solar irradiance in the atmosphere, cloud properties can be derived
from the geostationary satellites, for example, Geostationary Opera-
tional Environmental Satellite (GOES) and Meteosat Second Generation
(MSG) satellites [2,8]. Although physical clear-sky models generally
have better performance as they technically require more detailed at-
mospheric inputs [1], the inputs acquisition and model implementation
are typically associated with difficulties and uncertainties [3,11].
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In semi-empirical satellite methods for solar resourcing, a clear-
sky model is used to determine the clear-sky irradiance, i.e., GHIcs,
which accounts for the irradiance attenuation of aerosol, water vapor
content, and other gaseous atmospheric constituents [1]. While the
effect of clouds relies on the CI and CSI derived from a set of satel-
lite images within a period [12,13]. Semi-empirical satellite methods
are much easier and faster to apply, and the combination with a
physical clear-sky model can improve the performance [14]. Chen
et al. [15] compared four clear-sky models, namely, REST2, McClear,
Ineichen–Perez [16], and Ineichen–Perez TL [15], in GHI estimation
using optimized semi-empirical satellite method and GOES-16 imagery.
The results show the performance of semi-empirical satellite method
is comparable with the physical method, i.e., National Solar Radiation
Database (NSRDB) [2]. The Ineichen–Perez TL even produces better
GHIcs estimations than McClear and REST2, therefore, has potential
in supporting solar resourcing applications. The Ineichen–Perez TL
model is based on the Ineichen–Perez model using Linke turbidity (𝑇𝐿)
estimated from common local meteorological measurements [17].

When it comes to solar forecasting, the clear-sky model is suggested
to be used to deseasonalize the variations of solar irradiance by using
CSI in the development of solar forecasting models [18]. Generally,
local sensing is particularly suitable for intra-hour forecasting with ad-
equate on-site instrument [19,20]. Numeric Weather Prediction (NWP)
performs better in day-ahead forecasting, but the computation is de-
manding and the initial boundary conditions may inherit biases [1].
Satellite-based method is popular for intra-day forecasting where the
satellite images are used to identify and forecast the cloud distribu-
tion [1,18]. Yang [3] discussed the choice of clear-sky models in time
series solar forecasting, and it concluded that a better clear-sky model
does not yield better forecasts, so McClear model is recommended due
to its global availability. However, in practical forecasting applications,
the clear-sky irradiance of McClear model is not readily available
as an online service that can only be downloaded since 2004-01-01
up to two days ago [21]. Moreover, the required atmospheric inputs
of physical clear-sky models (e.g., REST2 and McClear) are difficult
to obtain [3,11], their forecasts are therefore associated with more
difficulties. In the development of solar forecasting models, the clear-
sky irradiance of the applied clear-sky model (e.g., REST2 or McClear)
is assumed to be available, which may not be known as a priori for
real-time applications.

The Ineichen–Perez model in PVLIB [22] based on 𝑇𝐿 from SoDa
database [23] is extensively applied in solar forecasting due to its sim-
plicity in implementation [3]. Recently, a new 𝑇𝐿 estimation method is
proposed to improve the accuracy of 𝑇𝐿 estimation using meteorologi-
cal measurements [17]. The improved 𝑇𝐿 estimation is then used as the
input of the Ineichen–Perez model with noticeable accuracy improve-
ment in estimating clear-sky irradiance. Considering that the forecasts
of meteorological information such as temperature and humidity are far
more accurate than solar irradiance forecasts [18], the Ineichen–Perez
TL model based on 𝑇𝐿 estimated via meteorological information has
broad potential in supporting solar forecasting applications.

Despite the potentials of the aforementioned 𝑇𝐿 estimation method,
it has one limitation that on-site solar irradiance data is required for
model development. However, solar irradiance measurements might
not be always available due to technical and financial constraints [6,
24]. To further expand the applicability of the 𝑇𝐿 estimation method,
in this work, we herein propose a transferable 𝑇𝐿 estimation model
based on the methodology presented in [17]. Instead of using local
solar irradiance measurements for model development, we first train
the model involving the locations with sufficient data, and then apply
the developed model at the location of interest for 𝑇𝐿 estimation and
then clear-sky irradiance estimation. The main meteorological inputs
are ambient temperature, relative humidity, wind speed, and atmo-
spheric pressure, which are available at most of the weather stations
or can be easily obtained using low-cost instrumentation. The major
636

contributions of this work are summarized as follows: r
• Develops a transferable 𝑇𝐿 estimation method using common
meteorological measurements.

• Compares and evaluates the performance of the transferable 𝑇𝐿
estimation method with SoDa interpolated (the default 𝑇𝐿 used
in PVLIB) and locally estimated 𝑇𝐿.

• Further compares the performance of GHIcs estimation with high-
performance physical models including McClear and REST2.

• Evaluates the performance of the transferable 𝑇𝐿 estimation model
for solar forecasting applications by comparing with physical
models.

The remainder of this paper is structured as follows: Section 2
escribes the used data, the 𝑇𝐿 estimation method, and details of
lear-sky models. The performance of the 𝑇𝐿 estimation method, and
lear-sky models for GHI estimation and discussion are presented in
ection 3. Finally, the key findings of this study and recommendations
re summarized in Section 4.

. Data and methods

This section describes the used data and the transferred 𝑇𝐿 estima-
ion method. As shown in Fig. 1, we first develop the 𝑇𝐿 estimation
odel involving stations with sufficient solar irradiance data, and then

pply the trained model at locations of interest where solar irradiance
easurement is not available. The meteorological inputs are ambient

emperature, relative humidity, wind speed, and atmospheric pressure,
hich are easy to obtain and available at most of the weather stations.
here are mainly four steps involved in the 𝑇𝐿 estimation, namely,
lear-sky detection, 𝑇𝐿 derivation, model development, and model
ransfer for 𝑇𝐿 and clear-sky irradiance estimations. The details of the
sed method for each step are presented in the following subsections.

.1. Data

The data used in this work is from the Surface Radiation Budget
etwork (SURFRAD) stations [25], namely, Bondville (BON), Desert
ock (DRA), Fort Peck (FPK), Goodwin Creek (GWN), Pennsylvania
tate University (PSU), Sioux Falls (SXF), and Table Mountain (TBL).
he detailed information of the SURFRAD stations is presented in Fig. 2.
ata including GHI, diffuse horizontal irradiance (DHI), solar zenith
ngle, and meteorological measurements over 2010–2020 of all the sta-
ions are downloaded and quality controlled. The used meteorological
ata includes ambient temperature, relative humidity, wind speed, and
tmospheric pressure. All the aforementioned measurements are in the
ime resolution of 1-min and indexed using coordinated universal time
UTC). Note that the GHI and other data at solar zenith angles over
5◦ are removed, since the GHI value is very low, and the derived 𝑇𝐿
s unrealistic due to the high airmass effect [17].

.2. Clear-sky models

The clear-sky models used for comparison in this study are REST2
10], McClear [9], Ineichen–Perez [16] model using default 𝑇𝐿 (avail-
ble in PVLIB [22]). The physical REST2 model has repeatedly been
erified as one of the high-performance models [3,26], and many of
he required input parameters, such as aerosol optical depth (AOD) at
50 nm, amount of ozone, and precipitable water need to be locally
easured or remotely sensed [3,10]. The clear-sky irradiance of REST2
sed in this work is from the NSRDB [2] with a time resolution of 5-
in. The McClear is also a fully physical model requiring atmospheric

nputs including AOD at 550 nm, ozone amount, water vapor content,
nd the aerosol type [9]. McClear applies a lookup table to speed up the
TMs calculations, and the clear-sky irradiance of McClear is available

rom CAMS [21], with the best time resolution of 1-min up to two days
go since 2004-01-01. PVLIB [22] estimates clear-sky irradiance based
n the interpolated 𝑇𝐿 coefficient of SoDa monthly means, and the time

esolution used in this work is 1-min.
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Fig. 1. The flowchart of transferred 𝑇𝐿 estimation model using machine learning and meteorological measurements.
Fig. 2. Summary of the seven SURFRAD stations. The information in the brackets is (altitude [m], time difference from UTC [hours], climate classifications), where Köppen climate
classifications are: Bsk (arid, steppe, cold), Bwk (arid, desert, cold), Cfa (temperate, without dry season, hot summer), Dfa (continental, without dry season, hot summer), Dfb
(continental, without dry season, warm summer).
2.3. Clear-sky detection and turbidity derivation

The clear-sky instants for all the SURFRAD stations are detected by
the Bright–Sun clear-sky detection algorithm [27], which is a globally
applicable and freely available clear-sky detection model. The inputs
of Bright–Sun model are GHI [W m−2], GHIcs [W m−2], DHI [W m−2],
clear-sky DHI (DHIcs) [W m−2], solar zenith angle [◦], horizontal pro-
jection of extraterrestrial irradiance [W m−2], and local standard time
(LST). Where GHI, DHI, and solar zenith angle are already available,
LST is calculated based on UTC and the timezones detailed in Fig. 2.
GHIcs, DHIcs, and extraterrestrial irradiance are derived using PVLIB,
horizontal projection of extraterrestrial irradiance is then calculated
referring the solar zenith angle. The Bright–Sun model consists of
three steps, namely, clear-sky irradiance optimization, tri-component
analysis of GHI, DHI, and direct normal irradiance (DNI), and duration
filter [27]. The optimization of clear-sky irradiance is to remove the ex-
cessive dependence on clear-sky models, the tri-component analysis is
to identify the ‘clear’ periods of all the irradiance components (i.e., GHI,
DNI, DHI), and the duration filter is to further improve the accuracy of
clear-sky detection by removing the cloud ramp events. More details
could be reached in [27]. After detecting the clear-sky instants, the
ground truth 𝑇 is derived based on measured GHIcs using inversed
637

𝐿

Ineichen–Perez model [16] and PVLIB [22] (see the adopted equations
from [17] in the Appendix).

2.4. Turbidity estimation model development

In our previous work [17], the results show that the 𝑇𝐿 estimation
model developed on a daily basis yields comparable GHIcs estimations
with the models developed on the time basis of hourly and 5-min, but
with much less complexity. The daily 𝑇𝐿 estimation model can also be
applied in partially clear days [17]. That said, both data samples of
clear-sky days and partially clear days can be included in the model
development following the same methodology. In specific, to better
represent the GHIcs-derived 𝑇𝐿 on a daily basis, only the days with
more than one third detected clear-sky periods of the daytime are
involved in the model training (e.g., if the daytime of day with the
solar zenith angle less than 85◦ is 8 h, only when the detected clear-sky
instants are more than 2.4 h, the day is included). Note that the derived
𝑇𝐿 should be averaged in the clear-sky periods to represent the daily
𝑇𝐿 value, while the meteorological measurements need to be averaged
on the daily basis (when the solar zenith angle is less than 85◦).

The daily 𝑇𝐿 estimation model can be trained locally if the location
has adequate data, especially the solar irradiance measurements. In
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this work, local 𝑇𝐿 estimation model is trained, validated, and tested
ndependently for all the SURFRAD stations for comparison. Data in the
ear range of 2010–2017 is used for training (20% of which is used
or validation), data in 2018–2020 is used for testing. The transferable
𝐿 estimation model is firstly trained and validated at stations with
ufficient instrumentation, and then the developed model is applied at
nother location of interest where the common meteorological mea-
urements are available. For instance, the 𝑇𝐿 estimation model can
e trained and validated using data from BON, DRA, FPK, PSU, SXF,
BL, and then be applied at GWN for estimating 𝑇𝐿 and then GHIcs
stimation. The transferred 𝑇𝐿 model for each SURFRAD station is
eveloped likewise, where the model is first trained and validated with
he other six stations (e.g., excluding GWN) and then applied at the
arget location (e.g., GWN). Data in 2010–2017 at other six stations is
sed for training (80%) and validation (20%), data in 2018–2020 at
he target location is used for testing and comparison.

The used machine learning algorithm in this study is multilayer
erceptron (MLP). MLP is known as feed-forward neural network con-
isting of the input layer, output layer, and one or more hidden layers
ased on the applications [28]. The parameters in MLP networks are
btained through back propagation [28]. MLP has a high flexibility in
pproximation and is widely applied in real applications. The hyperpa-
ameters of MLP are tuned using tenfold cross-validation method. For
ore details on MLP algorithm and the cross-validation method, the

eader is referred to Scikit-learn [29], which is the used tool for the
odel development in this work.

.5. Turbidity and clear-sky irradiance estimations

Two 𝑇𝐿 estimation models, namely, local and transferred 𝑇𝐿 es-
imation models are developed for comparison. The daily 𝑇𝐿 is then
stimated by the local and transferred models, separately. The me-
eorological inputs are daily averaged ambient temperature, relative
umidity, wind speed, and atmospheric pressure. The 1-min GHIcs
t all the SURFRAD stations in 2018–2020 are then derived using
neichen–Perez (PVLIB) model with the estimated 𝑇𝐿 factor, for both
he local and transferred 𝑇𝐿 estimation models. Since the measured
HI at solar zenith over 85◦ are not included, the corresponding GHIcs
stimations are also removed.

The comparison of GHIcs estimated by different models is in two
ime resolutions. The GHIcs estimated by PVLIB using default 𝑇𝐿 (re-
erred as 𝑇𝐿 default), 𝑇𝐿 estimated by the local model (referred as
𝐿 local), and 𝑇𝐿 estimated by the transferred model (referred as 𝑇𝐿
ransfer) are in the time resolution of 1-min. Therefore, the comparison
f 𝑇𝐿 default, 𝑇𝐿 local, and 𝑇𝐿 transfer is also in 1-min resolution.
ince the clear-sky irradiance of REST2 is in a time resolution of 5-
in, then the comparison involving REST2 should have the same time

esolution. Note that the aggregating measured and estimated GHIcs to
-min resolution should be the round way (i.e., data points from 13:58,
3:59, 14:00, 14:01, 14:02 are aggregated and indexed as 14:00) [30].

The error evaluation metrics are root mean squared error (RMSE),
ean bias error (MBE), and their normalized counterparts (nRMSE,
MBE) defined by the following equations:

MSE =
√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

RMSE =

√

1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)2

1
𝑁

∑

𝑜𝑖

MBE = 1
𝑁

∑

(𝑒𝑖 − 𝑜𝑖)

nMBE =
∑

(𝑒𝑖 − 𝑜𝑖)
∑

𝑜𝑖
where 𝑒𝑖 and 𝑜𝑖 are the pair of GHI estimation and ground observation,
𝑁 is the total number of compared data points.
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Table 1
The RMSE and MBE between derived 𝑇𝐿 and 𝑇𝐿 estimations from interpolation, local
and transferred models at seven SURFRAD stations for both clear-sky and partially clear
days in 2019.

𝑇𝐿 defaulta 𝑇𝐿 localb 𝑇𝐿 transferc

RMSE MBE RMSE MBE RMSE MBE

BON 1.02 0.85 0.34 −0.06 0.34 0.01
DRA 0.62 0.37 0.35 −0.17 0.32 −0.04
FPK 0.69 0.46 0.33 −0.02 0.33 −0.12
GWN 0.75 0.57 0.41 −0.18 0.43 −0.20
PSU 0.91 0.77 0.27 −0.06 0.28 −0.03
SXF 0.92 0.73 0.44 −0.17 0.44 −0.05
TBL 0.73 0.05 0.64 −0.32 0.95 −0.67

a ‘𝑇𝐿 default’ means the 𝑇𝐿 interpolation of SoDa monthly means, which is used in the
default PVLIB calculations.
b ‘𝑇𝐿 local’ means the 𝑇𝐿 estimated by the local model.
c ‘𝑇𝐿 transfer’ means the 𝑇𝐿 estimated by the transferred model.

3. Results and discussion

In this section, we evaluate the local and transferable 𝑇𝐿 estimation
models described above through the comparison of default 𝑇𝐿, derived
𝐿, and estimated 𝑇𝐿 in Section 3.1, the performance of GHIcs esti-
ation using different 𝑇𝐿 factors is presented in Section 3.2. We then

uantitatively compare the local and transferable 𝑇𝐿 estimation models
or estimating and forecasting GHIcs with physical clear-sky models of
EST2 and McClear in Section 3.3, as physical models are generally
onsidered as the most accurate models. Where the comparison of
HIcs estimation is presented in Section 3.3.1, and the result of GHIcs

orecasting is elaborated in Section 3.3.2.

.1. Evaluation of turbidity estimation models

The invariant 𝑇𝐿 interpolations based SoDa monthly climatology
eans cannot account for the short-term and long-term variations of

he aerosols and water vapor content in the atmosphere. As shown
n Fig. 3, the derived and estimated 𝑇𝐿 factors generally exhibit high
luctuations during the year of 2019, while the default 𝑇𝐿 has a
omparatively smoother profile. Meanwhile, all the 𝑇𝐿 curves show
similar trend that the 𝑇𝐿 tends to increase from the beginning of

ear to some peak point around the middle of the year, then follows
drop till the year end. Apart from higher variations, the derived and

stimated 𝑇𝐿 coefficients at most stations are generally lower than SoDa
nterpolations with some exceptions that are likely to happen around
he third quarter of the year. The diurnal and monthly variations of 𝑇𝐿
actor were also observed in the study of Chaâbane et al. [31], and the
ypically higher 𝑇𝐿 value of the monthly climatology means than the
erivations was confirmed by Hove and Manyumbu [32].

The detailed comparison between the derived 𝑇𝐿 and 𝑇𝐿 estimations
s presented in Table 1. It is shown that the default 𝑇𝐿 based on
nterpolations generally shows larger discrepancy in terms of RMSE
nd MBE than the 𝑇𝐿 estimations regardless of local or transferred
ethod is applied (excluding TBL, the possible reason is explained later

n). For instance, at BON, default 𝑇𝐿 shows a RMSE of 1.02 and a
BE of 0.85, the RMSE of 𝑇𝐿 estimation from the local method is

.34 and the corresponding MBE is −0.06, while 𝑇𝐿 estimation of the
ransferred method also has smaller RMSE and MBE values of 0.34 and
.01, respectively (see Table 1). When comparing the derived 𝑇𝐿 with
𝐿 estimations, both local and transferred 𝑇𝐿 estimations can follow the
luctuations of the derived 𝑇𝐿 along the year with different discrepan-
ies (see Fig. 3), which means the local and transferred 𝑇𝐿 estimation
ethods can account for the variations of the aerosol and water vapor

oncentration in the atmosphere. Generally, the transferred method
ends to produce 𝑇𝐿 estimation with larger values of RMSE and MBE
ince the local 𝑇𝐿 estimation method is developed based on the on-

ite sensed data, which is more likely to generate better results. For



Renewable Energy 206 (2023) 635–644S. Chen et al.

p
D
a

e
a
y
−
a
D
l
p
P

m

Fig. 3. The comparison of ground truth 𝑇𝐿 (𝑇𝐿 derived), PVLIB 𝑇𝐿 (𝑇𝐿 default), and 𝑇𝐿 estimations from local (𝑇𝐿 local) and transferred methods (𝑇𝐿 transfer) for clear-sky and
artially clear days in 2019, at seven SURFRAD stations: (a) DRA, (b) BON, (c) FPK, (d) GWN, (e) PSU, (f) SXF, and (g) TBL. Due to the high occurrence of clear-sky conditions,
RA has more clear-sky and partially clear days detected than the other six stations. Only the results of 2019 are presented here to show the trends, and the 𝑇𝐿 profiles in 2018
nd 2020 are similar.
t
a
H
T
a
i
t
l

xample, at GWN, the locally estimated 𝑇𝐿 has a RMSE of 0.41 and
MBE of −0.18, while the 𝑇𝐿 estimation of the transferred method

ields a result with comparatively larger RMSE and MBE of 0.43 and
0.20, respectively. Note that the transferred method sometimes may
lso yield comparable or even better 𝑇𝐿 estimations (see the results of
RA in Table 1). Although the transferred 𝑇𝐿 estimation method may

ead to larger uncertainties when compared with local estimation, it is a
otential way to provide more accurate 𝑇𝐿 coefficient than the default
VLIB interpolations.

The generally higher 𝑇𝐿 estimations based on the SoDa monthly
eans, the variations of derived 𝑇 followed by the 𝑇 estimations, and
639

𝐿 𝐿
he comparable 𝑇𝐿 estimation results of local and transferred models
re observed at most of the SURFRAD stations in Fig. 3 and Table 1.
owever, when it comes to TBL, the observations change noticeably.
he default 𝑇𝐿 shows relatively lower errors with a RMSE of 0.73 and
MBE of 0.05 when compared with most of the other stations. As

llustrated in Fig. 3(g), the derived 𝑇𝐿 is more likely to be higher than
he default interpolations of SoDa monthly means during the year. The
ocally estimated 𝑇𝐿 exhibits a similar profile with the 𝑇𝐿 derivation,

but the overall result is inferior to the results at other stations, and
the improvement of the 𝑇𝐿 estimation performance is also limited. The

transferred 𝑇𝐿 estimation model even fails to estimate the 𝑇𝐿 during
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s
i

Fig. 4. The statistic properties of the meteorological inputs in the year of 2019. (a) Ambient temperature, (b) Relative humidity, (c) Wind speed, and (d) Atmospheric pressure.
t

ome periods, where a clear underestimation is observed and thus the
ntra-year 𝑇𝐿 variations are also not accounted for. It is most likely that

the unique climate condition at TBL leads to the under-performance of
the transferred 𝑇𝐿 estimation model. As presented in Fig. 4, the me-
teorological measurements show different statistic properties, such as
the maximum, the minimum, and the mean, at each station. Therefore,
a better 𝑇𝐿 estimation model could be developed when local climate
features are accounted for. When there is no sufficient on-site data for
local model development, the transferred model could be an option.
Recall that the transferred 𝑇𝐿 estimation model is first trained and
validated at stations with adequate information, and then applied at the
location of interest. The transferred 𝑇𝐿 estimation method can generally
work for most locations but TBL. The possible reason could be the lower
atmospheric pressure than the other stations as shown in Fig. 4(d).
When developing the transferable 𝑇𝐿 estimation model for TBL using
data from other six stations, the atmospheric pressure, unlike ambient
temperature, relative humidity, and wind speed, stays far away from
the range of used inputs. The use of out-of-range local pressure as an
input for the transferred 𝑇𝐿 estimation method might produce a result
with large discrepancy, this is why the transferable 𝑇𝐿 estimation model
underperforms. That said, it is suggested to use data from the locations
with similar climate characteristics when developing the transferable
𝑇𝐿 estimation model for practical applications.

The sensitivity analysis in the study of Chen and Li [17] shows that
ambient temperature and relative humidity have comparatively larger
influence on the 𝑇𝐿 estimation than wind speed. The estimated 𝑇𝐿 goes
up with the increases in ambient temperature and relative humidity,
while the increases in wind speed and atmospheric pressure result in
a drop of 𝑇𝐿 estimation. Wind speed has the least importance in 𝑇𝐿
estimation. As for pressure, the sensitivity analysis presents relatively
larger variations when changing the pressure by 10%. However, this
have limited implications as the piratical atmospheric pressure for
a certain place does not has high variations compared with other
meteorological parameters. Since the transferred 𝑇𝐿 estimation follows
the same methodology of the local methods, the sensitivity analysis of
640

the transferred 𝑇𝐿 estimation model should have similar results. s
Table 2
The comparison of 𝑇𝐿 and GHIcs estimations at TBL in 2018–2020, including the 𝑇𝐿
estimation models developed with and without atmospheric pressure (𝑃𝑎).

𝑇𝐿 estimation GHIcs estimation

RMSE MBE nRMSE [%] nMBE [%]

𝑇𝐿 local with 𝑃𝑎 0.64 −0.32 3.23 1.55
𝑇𝐿 local without 𝑃𝑎 0.70 −0.46 3.40 1.84
𝑇𝐿 transfer with 𝑃𝑎 0.95 −0.67 4.43 2.84
𝑇𝐿 transfer without 𝑃𝑎 1.48 −1.20 6.70 5.23

To further investigate the influence of atmospheric pressure in the
𝑇𝐿 estimation models, new local and transferred 𝑇𝐿 estimation models
for TBL are developed without using atmospheric pressure. The results
of 𝑇𝐿 and related GHIcs estimations are presented in Table 2. When the
atmospheric pressure is excluded in the development of 𝑇𝐿 estimation
models, both local and transferred models produce 𝑇𝐿 estimations with
larger errors of RMSE and MBE as shown in Table 2. Similarly, the
GHIcs estimations based on 𝑇𝐿 estimated by models without using
atmospheric pressure also have comparatively larger discrepancies of
nRMSE and nMBE. Therefore, it is suggested to use the atmospheric
pressure as an input parameter in the development of 𝑇𝐿 estimation
models.

3.2. Comparison of GHIcs estimations using different turbidity factors

Since the default 𝑇𝐿 interpolations generally have larger RMSE
and MBE values and do not show many variations along the year
(see Table 1 and Fig. 3), the related GHIcs estimations are then also
associated with higher discrepancies of nRMSE and nMBE as shown in
Table 3. It tends to underestimate the GHIcs using default PVLIB as the
interpolated 𝑇𝐿 from SoDa monthly means are typically higher than
the 𝑇𝐿 derivations. When compared with default 𝑇𝐿 interpolations, the
estimated 𝑇𝐿 from both local and transferred methods are more likely
to yield better GHIcs estimations (see Table 3).

As discussed in Section 3.1, the local 𝑇𝐿 estimation models tends
o generate better 𝑇𝐿 estimations via the direct inferring to the on-

ite meteorological features. Therefore, the GHIcs estimation using the
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Table 3
The nRMSE [%] and nMBE [%] of 1-min averaged GHIcs estimations using different
𝑇𝐿 factors at SURFRAD stations in 2018–2020. The used 𝑇𝐿 coefficients are default
nterpolations (𝑇𝐿 default), estimations of the local model (𝑇𝐿 local) and transferred
odel (𝑇𝐿 transfer).
Station 𝑇𝐿 default 𝑇𝐿 local 𝑇𝐿 transfer

nRMSE [%] nMBE [%] nRMSE [%] nMBE [%] nRMSE [%] nMBE [%]

BON 8.04 −6.32 3.25 0.39 3.31 −0.18
DRA 3.40 −1.96 2.15 0.89 1.97 0.14
FPK 4.88 −2.78 2.56 0.24 2.54 0.80
GWN 5.91 −3.83 3.58 1.32 3.67 1.37
PSU 6.71 −5.29 2.86 0.25 2.78 0.36
SXF 6.76 −4.88 3.69 1.48 3.68 0.67
TBL 3.55 −0.23 3.23 1.55 4.43 2.84
ALLa 5.24 −3.41 2.75 0.45 2.80 0.84

aTBL is not included due to the under-performance of the transferred 𝑇𝐿 estimation
model.

locally estimated 𝑇𝐿 might also have smaller divergences in terms of
nRMSE and nMBE. Since the transferred models are developed using
data from other locations, there could be more uncertainties associated
in the related 𝑇𝐿 estimations. This also introduces comparatively larger
discrepancies in the GHIcs estimations using 𝑇𝐿 estimated by the trans-
erable models. However, there is no significant difference between
he local and transferred 𝑇𝐿 estimation methods regarding the GHIcs
stimations. Consequently, the transferred 𝑇𝐿 estimation model at TBL
hows inferior performance in 𝑇𝐿 estimations, which also leads to larger
rrors in estimating GHIcs.

The overall performance of GHIcs estimation at SURFRAD stations
TBL is not included due to the under-performance) is also presented
n Table 3. Using the default 𝑇𝐿 to generate GHIcs estimation has

comparatively larger errors with an nRMSE of 5.24% and an nMBE of
−3.41%, while using the estimated 𝑇𝐿 from local and transferred meth-
ds show noticeable improvements. The nRMSE of GHIcs estimation
ased on estimated 𝑇𝐿 is reduce to 2.75% and 2.80% for the local and
ransferred methods, respectively. The nMBE is improved to 0.45% for
he local method, and to 0.84% for the transferred method. Although
he overall performance of locally estimated 𝑇𝐿 is slightly better than
he transferred 𝑇𝐿 estimations, the transferable model is still viable to
stimate the 𝑇𝐿 and GHIcs for locations without sufficient data.

.3. Comparison of GHIcs estimations and forecasts with physical models

To further evaluate the results of GHIcs estimation using improved
𝐿 estimations, we herein compare the performance with physical mod-
ls, namely, the McClear model and the REST2 model. The comparison
s in two folds: one is the real-time GHIcs estimation and the other one
s persistent day-ahead GHIcs forecasts.

.3.1. Comparison of GHIcs estimations with physical models
Table 4 details the overall performance of 5-min GHIcs estimations

nd forecasts using 𝑇𝐿 based model and physical at SURFRAD stations,
BL is not included due to the under-performance in 𝑇𝐿 estimations
sing the transferred method. The default 𝑇𝐿 produces a GHIcs esti-
ation with the largest nRMSE of 4.99% and the nMBE is −3.37%,

while the local 𝑇𝐿 estimation generates the best GHIcs estimation with
the nRMSE of 2.38% and the nMBE of 0.16%. As expected, the trans-
ferred 𝑇𝐿 estimation yields a result with relatively larger discrepancies
compared with the locally estimated 𝑇𝐿, the nRMSE and nMBE are
2.44% and 0.57%, respectively. Note that the transferred 𝑇𝐿 estimation
even produces better results than the McClear model and the REST2
model in terms of nRMSE and nMBE (see Table 4), while the REST2
model outperforms McClear with the nRMSE of 2.55% and nMBE of
1.30%. However, there is no significant difference between estimations
from the transferred model and the physical models. The detailed
comparison of GHIcs estimations at each SURFRAD station is presented
641
Table 4
Overall results of GHIcs estimations and day-ahead persistent GHIcs forecasts with
the time resolution of 5-min at SURFRAD stations excluding TBL in 2018–2020. Used
models are the Ineichen–Perez model with three 𝑇𝐿 inputs, the McClear model, and
the REST2 model.

Model GHIcs estimation GHIcs forecastsa

nRMSE [%] nMBE [%] nRMSE [%] nMBE [%]

𝑇𝐿 default 4.99 −3.37 4.64 −3.02
𝑇𝐿 local 2.38 0.16 2.85 0.32
𝑇𝐿 transfer 2.44 0.57 2.99 0.74
McClear 3.32 2.10 4.11 1.55
REST2 2.55 1.30 3.51 0.79

aThe forecast is based on a day persistent method, where the day-ahead GHIcs is
assumed as the same as the present day.

in Fig. 5. Physical models are more likely to produce over-estimations,
and the local and transferred 𝑇𝐿 estimations also tend to overestimate
GHIcs but with smaller bias.

The possible reason why the empirical model based on improved
𝑇𝐿 estimation yields comparable results with physical clear-sky models
could be the avoidance of uncertainty accumulation. Physical models
require detailed atmospheric inputs such as aerosol, water vapor and
ozone, these inputs are usually based on reanalysis products such as
MERRA-2. The MERRA-2 reanalysis products are derived from satellite
measurements and therefore are associated with uncertainties [33].
This means the use of reanalysis products for clear-sky irradiance
estimation in physical models would have accumulated uncertainties.
However, the 𝑇𝐿 derivation is a one-step-through process based on
quality-controlled irradiance data, which includes imbedded 𝑇𝐿 infor-

ation. Therefore, it is more likely to avoid the accumulation of multi-
tep uncertainties. Although physical clear-sky models are proved to
ave higher accuracy in GHIcs estimation, the comparable results with
ess complexity of the transferred 𝑇𝐿 estimation model demonstrates its

potential usage for locations without sufficient on-site information.

3.3.2. Comparison of GHIcs forecasts with physical models
Since clear-sky irradiance (clear-sky model) is also essential in

solar forecasting, we also evaluate and compare the performance of
𝑇𝐿 based forecasts with the McClear model and the REST2 model.
Considering that McClear and REST2 are physical models requiring
detailed atmospheric inputs, which are difficult to obtain and forecast,
we therefore apply a day persistent method to predict the GHIcs in
the coming day. In specific, the profile of GHIcs for the coming day
is assumed as the same as the present day [34,35]. Note that McClear
is available as a web service from 2004-01-01 up to two days ago, and
is recommended for solar forecasting applications in [3]. However, in
real time forecasting applications, e.g., the present day and the coming
day, the clear-sky irradiance of McClear is not available. This means the
atmospheric inputs for both McClear and REST2 should be obtained at
present day, which introduces even more difficulties in retrieving and
measuring the atmospheric optical properties. To perform a fair com-
parison, we assume the clear-sky irradiance (i.e., GHIcs) of REST2 and
McClear could be obtained for the present day, and the meteorological
measurements are available.

The overall result of GHIcs forecasts using the day persistent method
is presented in Table 4. The largest nRMSE (4.64%) and nMBE (−3.02%)
are generated using the default 𝑇𝐿, while the other two 𝑇𝐿 based GHIcs
predictions show lower nRMSE than the physical models. The local and
transferred 𝑇𝐿 estimations yield GHIcs forecasts with the nRMSE of
2.85% and 2.99%, respectively. The nRMSE of McClear based forecasts
is 4.11%, while REST2 produces a result with the nRMSE of 3.51%.
GHIcs forecasts based on estimated 𝑇𝐿 also have smaller biases, the
transferred method generates a comparatively larger nMBE of 0.74%,
while the local model produces a result with the nMBE of 0.32%. The
physical models are likely to produce relatively larger over-estimations

in forecasting GHIcs, where the McClear shows an nMBE of 1.55 and
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Fig. 5. The nRMSE and nMBE between the 5-min averaged GHIcs measurements and estimations using different models at SURFRAD stations in 2018–2020. GHIcs is estimated
by the Ineichen–Perez model with three different 𝑇𝐿 inputs, the McClear model, and the REST2 model.
Fig. 6. The nRMSE and nMBE between the 5-min averaged GHIcs measurements and day-ahead forecasts using the day persistent method at SURFRAD stations in 2018–2020.
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the REST2 has an nMBE of 0.79%. Compared with GHIcs estimations
(except the default 𝑇𝐿 method), GHIcs forecasts are generally associated

ith larger uncertainties of nRMSE as shown in Table 4. The compari-
on of day-ahead GHIcs forecasts at each SURFRAD station is illustrated
n Fig. 6. The results of local and transferred 𝑇𝐿 estimations produce

comparable day-ahead GHIcs forecasts with physical models in terms
of nRMSE and nMBE. Similarly, considering the comparable results
for day-ahead GHIcs forecasts with less complexity, the uncertainty
and time lag in obtaining atmospheric inputs for physical models, the
methods of improved 𝑇𝐿 estimations show potential in supporting solar
orecasting applications.
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t

4. Conclusions

In this work, we propose a transferable 𝑇𝐿 estimation method for
estimating GHIcs. The transferred 𝑇𝐿 estimation model follows a similar

ethodology with the local 𝑇𝐿 estimation model presented in [17].
nstead of using on-site solar irradiance data for model development
n the local model, the transferable model is first trained and validated
nvolving stations with sufficient data, and then applied at the location
f interest for 𝑇𝐿 estimation and thus the clear-sky irradiance. The
ain meteorological inputs of the 𝑇𝐿 estimation model are ambient

emperature, relative humidity, wind speed, and local atmospheric
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pressure. As common meteorological information, they are easy to
obtain and available at most of the weather stations. Both local and
transferred 𝑇𝐿 estimation models are applied at the SURFRAD stations,
the performance of GHIcs estimation is evaluated with the on-site
measurements and also compared with physical McClear and REST2
models.

The local 𝑇𝐿 estimation method shows a high performance in GHIcs
estimation with the nRMSE of 2.38% and the nMBE of 0.16%, the
nRMSE and nMBE of GHIcs forecasts are 2.85% and 0.32%, respec-
tively. The transferred 𝑇𝐿 estimation model yields results with slightly
larger divergences for both GHIcs estimations and forecasts. When
applying the method at all the SURFRAD stations (excluding TBL), the
overall nRMSE of GHIcs estimation is reduced from 4.99% to 2.44%,
and the overall nMBE is decreased from −3.37% to 0.57% compared
with the default PVLIB calculations. The result of GHIcs estimation
based on the estimated 𝑇𝐿 is also comparable with the physical clear-
sky models, where the McClear yields an overall nRMSE of 3.32%
and the nMBE is 2.10%, while the REST2 produces the overall result
with an nRMSE of 2.55% and an nMBE of 1.30%. Considering the
difficulties and uncertainties in forecasting the atmospheric inputs and
meteorological data, we further compare the aforementioned methods
for estimating the day-ahead GHIcs using a persistent way, where the
day-ahead GHIcs is assumed as the same as the present day. The results
show that the local 𝑇𝐿 estimation has an overall forecasting with the
nRMSE of 2.85% and nMBE of 0.32%, the transferred method for 𝑇𝐿
estimation generates the GHIcs forecasts with an overall nRMSE of
2.99% and an nMBE of 0.74%, the McClear produces an nRMSE of
4.11% and an nMBE of 1.55%, while the REST2 yields a result with
the nRMSE of 3.51% and the nMBE of 0.79%.

The transferred 𝑇𝐿 estimation model does not yield similar results
at TBL due to its unique climate features, so one recommendation for
developing the transferable 𝑇𝐿 estimation model is to use data from
locations with similar climate conditions. Considering the improved
GHIcs estimations and day-ahead forecasts, the comparable results
with physical clear-sky models, and the complexity and difficulty in
obtaining atmospheric inputs, both the local and transferred 𝑇𝐿 esti-
mation methods show a potential to support the solar resourcing and
forecasting applications. The local 𝑇𝐿 estimation method is suggested
for stations with sufficient data, and the transferred 𝑇𝐿 estimation
model is therefore recommended for locations without adequate infor-
mation.
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Appendix

The equations used to derive ground truth 𝑇𝐿 are adopted from [17].

𝑇𝐿 =
[

ln
( GHIcs
𝑐1 ⋅ 𝐼0 ⋅ cos(𝜃)

)

∕(−𝑐2⋅𝐴𝑀) − 𝑓1

]

∕𝑓2 + 1

with:

𝐴𝑀 =

(

1
cos(𝜃) + 0.50572 ⋅

(

6.07995 + (90 − 𝜃)−1.6364
)

)

⋅
𝑃𝑎

101325

𝑐1 = 5.09⋅10−5⋅ℎ + 0.868

𝑐2 = 3.92⋅10−5⋅ℎ + 0.0387

𝑓1 = exp(−ℎ∕8000)

𝑓2 = exp(−ℎ∕1250)

where 𝑇𝐿 is the Linke turbidity, GHIcs [W m−2] is the measured GHIcs.
𝑐1, 𝑐2, 𝑓1, 𝑓2 are altitude-dependent coefficients, 𝐼0 [W m−2] is the
solar constant, 𝜃 [◦] represents the solar zenith angle, 𝐴𝑀 is the
absolute airmass, 𝑇𝐿 is the Linke Turbidity factor, 𝑃𝑎 [Pa] is the local
atmospheric pressure, and ℎ [m] is local altitude.
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