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 A B S T R A C T

As the capacity addition of solar energy systems continues to increase, solar resource assessment is necessary 
in supporting the feasibility study. This can reduce associated risks of solar energy projects and improve their 
reliability. Considering the scarcity of on-site measurements, satellite-based irradiance retrievals with high 
temporal resolutions (i.e., 5-min) have been extensively used as an alternative in solar resource assessment. 
However, satellite-to-irradiance algorithms, either physical or statistical, focus more on the global horizontal 
irradiance. The direct normal irradiance (DNI) in most satellite-derived irradiance products is associated with 
more uncertainties because of its high sensitivity to the atmosphere. To further improve the accuracy in end-
to-end satellite-based 5-min DNI estimations, the clearness index based on extraterrestrial solar irradiance 
is proposed as the target in deep learning satellite-to-DNI models with images of eight selected spectral 
bands. The results show that clearness index can better account for attenuation effects of the atmosphere, 
and thus the DNI estimations are associated with lower uncertainties. The use of clearness index offers 
additional advantages on computing extraterrestrial solar irradiance and pre-processing 5-min spectral satellite 
data, which is beneficial for large-scale applications. Although the satellite-to-DNI estimation shows high 
errors under clear-sky condition at some stations, and more efforts are still required in better extracting the 
atmospheric information (e.g., clouds and aerosols) from satellite images, especially at low solar elevations, 
the clearness index provides a new perspective in 5-min satellite-to-DNI retrievals with reduced uncertainties. 
This is beneficial to the reliability in designing solar energy projects.
1. Introduction

With the growing need of clean energy, it is expected that the 
capacity of renewables will keep increasing as driven by the reduced 
costs, supportive policies, and global climate goals [1,2]. It is reported 
that the new capacity addition of solar power by 2030 will account for 
80% of the global growth of renewable energy [3]. However, the power 
output and reliability of solar photovoltaic (PV) and concentrated 
solar power (CSP) are heavily relied on the available solar irradiance, 
namely, global horizontal irradiance (GHI), direct normal irradiance 
(DNI), and diffuse horizontal irradiance (DHI). The uncertainty and 
intermittency of local solar irradiance, as one of the major challenges in 
the application of solar energy systems, greatly hinders their operation 
and integration to the power grid [4]. Therefore, it is necessary to have 
adequate on-site information (e.g., solar irradiance) for solar resource 
assessment to support the feasibility study of solar energy projects, 
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which is to reduce the long-term risk and ensure the reliability [5]. Cal-
ibrated ground measurements are usually the most reliable data source, 
while complete and long-term in-situ measurements are scarce at most 
locations because of the financial and technical constraints [4]. Under 
such circumstances, irradiance retrievals from satellite measurements 
have been widely used as an alternative in supporting the design of 
solar energy projects [6,7].

Algorithms for satellite-based irradiance estimation can be broadly 
classified as statistical and physical methods [5,7]. Physical methods 
employ radiative transfer models (RTMs) to simulate the interaction 
between solar radiation and atmospheric compositions. Compared with 
physical methods, pure empirical and semi-empirical statistic methods 
are generally easier to implement. Physical and semi-empirical models 
can be accurate as long as there are high-quality atmospheric inputs
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Nomenclature

Abbreviations

ABI Advanced Baseline Imager
BON Bondville
CNN Convolutional neural network
CSP Concentrated solar power
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DNIcs Clear-sky DNI
DRA Desert Rock
FPK Fort Peck
GHI Global horizontal irradiance
GHIcs Clear-sky GHI
GOES Geostationary Operational Environmental Satel-

lite
GWN Goodwin Creek
Irradiancecs Clear-sky solar irradiance
MBE Mean bias error
MERRA-2 Modern-Era Retrospective analysis for Research 

and Applications, Version 2
NIR Near-infrared
nMBE Normalized mean bias error
nRMSE Normalized root mean squared error
NSRDB National solar radiation database
POA Plane of array
PSM Physical solar model
PSU Pennsylvania State University
PV Photovoltaic
QC Quality control
ReLU Rectified Linear Unit
RMSE Root mean squared error
RTM Radiative transfer model
SURFRAD Surface Radiation Budget Network
SXF Sioux Falls
SZA Solar zenith angle
TBL Table Mountain
UTC Coordinated Universal Time
Notations

∗ Convolution operator
𝑜̄ Mean of the observation
𝜆 Wavelength
𝜇 Mean
𝜎 Standard deviation
𝜃 Solar zenith angle
𝐿̃ Normalized pixel value
◦ Degree
𝑑 Dimension
𝑒 Estimation
𝐸0 Extraterrestrial solar irradiance
𝐸𝑠𝑐 Solar constant
𝑓 Function
𝐾 Key
𝑘𝑐 Clear-sky index of GHI
𝑘𝑐𝑏 Clear-sky index of DNI
𝑘𝑡𝑏 Clearness index of DNI
2 
𝑘𝑡𝑏_T Transferred model based on 𝑘𝑡𝑏
𝑘𝑡𝑏_UNS Clearness index with unnormalized satellite data
𝑘𝑡𝑏_UNST Transferred model based on 𝑘𝑡𝑏_UNS
𝐿 Raw pixel value
𝑁 Number of data points
𝑜 Observation
𝑄 Query
𝑅2 Coefficient of determination
𝑟𝑎𝑤 Pack-scaled value
𝑠𝑐𝑎𝑙𝑒 Scale factor
𝑡 Time
𝑉 Value
𝑊𝑖 Weights
offset Add offset
radiance Radiance received by satellite sensor
Subscripts

𝑖 The 𝑖th row
𝑗 The 𝑗th column
𝑘 The 𝑘th value
𝑡 Time

Superscripts

𝑏 Spectral channel

available, though such inputs are difficult to obtain. Given advance-
ments of machine and deep learning algorithms and the improved 
resolution of spatio-temporal data from modern geostationary satellites, 
the combination of deep learning and remote sensing has been applied 
as an optimized statistical method for satellite-to-irradiance applica-
tions [8]. Even the national solar radiation database (NSRDB) has 
applied machine learning with physical guidance to improve the quality 
and accuracy of the irradiance retrieval data [9,10]. The combination of 
remote sensing and deep learning can better extract the cloud informa-
tion from satellite images and thus the uncertainty in solar irradiance 
estimation can be reduced [8]. Although end-to-end deep learning 
satellite-to-irradiance methods are more effective in implementation, 
they often face extrapolation issues, where physics-informed machine 
learning could be a solution.

Both GHI and DNI are important components for quantifying the 
available surface solar irradiance for energy applications [4]. Compared 
with GHI, DNI is more related to CSP or PV with a tracking system [11]. 
In fact, DNI is also an important component in the calculation of 
the plane of array (POA) irradiance for inclined PV panels at a fixed 
angle [12]. There are many methods proposed for solar irradiance 
retrieval from different satellites apart from the NSRDB, for instance, 
the physics-based and empirically adjusted algorithm based on the 
SEVIRI satellite [13], the physical Heliosat−4 method [14] based on 
Meteosat Second Generation satellites, and machine learning methods 
with satellite data from Himawari-8 [15] and Fengyun-4 [16]. It has 
been repeatedly observed that satellite-based DNI estimations, derived 
with either physical or data-driven models, are associated with higher 
uncertainties than satellite-to-GHI retrievals [8,17]. The possible reason 
could be that DNI is more sensitive to the atmosphere than GHI, as the 
attenuation of sunlight in the incoming direction is more influenced by 
clouds (via blocking) [11], while GHI is partially compensated by the 
increased DHI because of scattering through the closure relationship. 
As the most frequently used irradiance component, GHI is usually the 
target of interest in satellite-based estimation of solar irradiance [5]. 
In practical applications, GHI can be separated to DNI and DHI with 
a separation model [18], or transposed to POA irradiance using a 
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transposition model [19]. However, there might be some accumulated 
error in irradiance separation and transposition using satellite-derived 
GHI [20]. To better support satellite-based solar resource assessment 
for both PV and CSP projects, it is necessary to obtain satellite-derived 
DNI with reduced uncertainties [11].

Since the inputs of cloud properties (as the most influential fac-
tor) for RTM-based DNI calculation are usually derived from satellite 
measurements [9], there has been a dearth of studies to reduce error 
accumulations in RTM-based satellite-to-DNI and to improve the model-
ing efficiency. In physical satellite-to-DNI models, the key is to improve 
the representation of DNI from satellite measurements [20,21]. For 
clear sky conditions, DNI is usually computed using with clear-sky 
models (e.g., the REST2 [22] and McClear [23]) with atmospheric 
inputs, such as Moderate Resolution Imaging Spectroradiometer [9] 
and Modern-Era Retrospective analysis for Research and Applications, 
Version 2 (MERRA-2) [11,20]; while in cloudy skies, clouds attenuation 
on DNI is usually determined using satellite data. For instance, the 
cloud cover [21] or cloudiness index (representing the cloud effect 
on DNI) [20] can be derived from visible imagery of geostationary 
satellite, such as the Geostationary Operational Environmental Satellite 
(GOES), which is then coupled with clear-sky models (e.g., REST2) and 
atmospheric inputs (e.g., MERRA-2) to calculate DNI estimates under 
all-sky conditions [20,21].

Although physical methods are universal and could have very high 
accuracies with detailed atmospheric concentration profiles, while such 
information are usually difficult to obtain. On the other hand, deep 
learning models can be used as an alternative to replace physical 
methods for satellite-to-irradiance conversion with appropriate hyper-
parameters, adequate observations, and effective training [24,25]. In 
satellite-based solar irradiance estimation with machine learning, satel-
lite data should be pre-processed or normalized [1]. This is applicable 
to both solar resource assessment [8] and forecasting that directly 
using satellite data [26], and those indirect solar radiation modeling in-
volved with cloud detection [27] and cloud motion forecast [28]. Simi-
larly, the target in data-driven satellite-based solar resource assessment 
should also be normalized. The output is usually the clear-sky index 
(Irradiance∕Irradiancecs) [8,29], which is the ratio between irradiance 
measurements and their clear-sky expectations (Irradiancecs). However, 
clear-sky models generally show higher uncertainties in clear-sky DNI 
computations because of the uncertainties in atmospheric inputs [30], 
which means clear-sky index of DNI based on inaccurate clear-sky DNI 
expectation might not account for the true cloud attenuation effect. It 
is on this account that this study proposes to use clearness index in 
satellite-to-DNI with deep learning to reduce the uncertainty in DNI 
estimations. The major contributions of this work are summarized as 
follows:

• Clearness index of DNI based on extraterrestrial solar irradiance 
is proposed in satellite-based DNI estimations with deep learning. 
This provides a more efficient method for normalizing DNI time 
series than clear-sky DNI normalization, since the extraterrestrial 
solar irradiance is more convenient to compute, which also avoids 
the uncertainties in clear-sky DNI models.

• Clearness index also has the advantage over clear-sky index in 
accuracy, as extraterrestrial solar irradiance can be calculated 
with a high accuracy, whereas clear-sky DNI estimations are often 
associated with large modeling uncertainties. Additionally, clear-
ness index inherently accounts for attenuation effects on DNI of 
all atmospheric compositions along the direct optical path, which 
provides a more comprehensive representation of the atmospheric 
influence on DNI than the clear-sky index.

• The impact of satellite data normalization is investigated in deep 
learning based satellite-to-DNI modeling, which demonstrates 
that clearness index better reflects the atmospheric attenuation 
effect and is more compatible with raw satellite inputs. The 
saved efforts in extensive satellite data pre-processing can fur-
ther improve the modeling efficiency, particularly beneficial for 
large-scale regional applications.
3 
The rest of this work is structured as follows: Section 2 describes the 
used data of ground-level measurements, satellite images, and satellite-
derived irradiance with physical methods. Data pre-processing and 
deep learning satellite-to-DNI method are detailed in Section 3. The 
results of satellite-based DNI estimations are evaluated and compared 
in Section 4. Finally, the key findings of this study are summarized in 
Section 5.

2. Data

2.1. Ground-level measurements

Ground-level measurements used in this work are from the Sur-
face Radiation Budget Network (SURFRAD) [31], which consists of 
seven stations, namely, Bondville (BON), Desert Rock (DRA), Fort Peck 
(FPK), Goodwin Creek (GWN), Penn. State University (PSU), Sioux Falls 
(SXF), and Table Mountain (TBL), in several climate zones across the 
United States. A detailed illustration of the seven SURFRAD stations 
is presented in Fig.  1 and Table  1. SURFRAD provides high-quality 1-
min data for a variety of meteorological measurements indexed with 
Coordinated Universal Time (UTC). Although the major variable of 
interest is DNI for model development and performance evaluation, 
other types of data, including GHI, DHI, solar zenith angle (SZA), are 
required for quality control (QC). All the mentioned 1-min data from 
years 2019 and 2020 are downloaded and filtered using a couple of QC 
steps, namely, extremely rare limit test and three-component closure 
test [32]. There are three parts in the extremely rare limit test: 
−2 ≤ GHI ≤ 1.2𝐸0cos1.2(𝜃) + 50, (1)

−2 ≤ DHI ≤ 0.75𝐸0cos1.2(𝜃) + 30, (2)

−2 ≤ DNI ≤ 0.95𝐸0cos0.2(𝜃) + 10, (3)

where 𝐸0 [W/m2] is the extraterrestrial solar irradiance, 𝜃 [◦] is the 
SZA. The three-component closure test has two steps: 
| closure | ≤ 8% for 𝜃 ≤ 75◦ and GHI > 50, (4)

| closure | ≤ 15% for 75◦ < 𝜃 < 93◦ and GHI > 50, (5)

where closure = GHI∕(DNI ⋅ cos(𝜃) + DHI) − 1, which describes the 
closure relationship of the three solar irradiance components. Any data 
points that cannot pass the QC steps are removed. For more details 
and theoretical aspects on the QC steps in pre-processing raw solar 
irradiance measurements, the reader is referred to [32,33]. Since solar 
irradiance is not available during nighttime and there is a high air mass 
effect at solar mornings and evenings [34], irradiance measurements 
at a SZA of 85◦ or greater are discarded. After QC, the 1-min data are 
resampled to 5-min intervals using the ‘center’ scheme, as suggested 
by [17,35,36]. For example, the 5-min DNI at 𝑡 = 14:00 is the mean 
over times of 13:58, 13:59, 14:00, 14:01, and 14:02.

2.2. Satellite data

Geostationary satellites collectively cover all areas within latitudes 
of ±60◦, providing continuous observations of atmospheric conditions 
for the Earth [2]. There are a variety of data and data products 
from measurements of the geostationary satellite. For instance, GOES-
R series provide numerous Level 1b and Level 2 products for different 
applications. The satellite data used in this work are spectral imagery 
of GOES-16 located at the operational longitude of 75.2◦W during the 
investigated period of this study. These spectral images are based on 
the measured radiance (Level 1b data) that have been calibrated and 
georeferenced. There are 16 spectral bands in the Advanced Baseline 
Imager (ABI) of GOES-16, which can provide measurements in the 
temporal resolution of 5-min and in the spatial resolution of 0.5–2 km 
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Fig. 1. Spatial distribution of the seven SURFRAD stations. The information in brackets is (altitude [m], time difference from UTC [hours], climate zones), where 
the climate zone in different color is based on Köppen-Geiger climate classifications [37].  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
Table 1
A summary of the seven SURFRAD stations. The climate is based on Köppen classifications: Bsk (arid, steppe, cold), Bwk 
(arid, desert, cold), Cfa (temperate, without dry season, hot summer), Dfa (continental, without dry season, hot summer), Dfb 
(continental, without dry season, warm summer).
 Abbr. Station Latitude Longitude Altitude Climate Time zone Data availablea 
 BON Bondville 40.05◦ −88.37◦ 230 m Dfa UTC-6 36.65%  
 DRA Desert Rock 36.62◦ −116.02◦ 1007 m Bwk UTC-8 38.25%  
 FPK Fort Peck 48.31◦ −105.10◦ 634 m Bsk UTC-7 34.58%  
 GWN Goodwin Creek 34.25◦ −89.87◦ 98 m Cfa UTC-6 35.01%  
 PSU Penn. State Uni. 40.72◦ −77.93◦ 376 m Dfb UTC-5 34.68%  
 SXF Sioux Falls 43.73◦ −96.62◦ 473 m Dfa UTC-6 32.80%  
 TBL Table Mountain 40.12◦ −105.24◦ 1689 m Bsk UTC-7 36.41%  
a All nighttime data and points that do not pass the quality control are discarded.
at the sub-satellite point for the continental United States. The radiance 
products of all 16 channels can be used individually or together for 
applications on analyzing the Earth and atmosphere [38]. For instance, 
reflective bands (1–6) are for the characterization of clouds, vegetation, 
snow/ice, and aerosols, while emissive bands (7–16) can support char-
acterizing the surface, clouds, water vapor, and particles that based on 
emissive properties [39]. In principle, all 16 satellite spectral bands 
should be used in deep learning based satellite-to-DNI models since 
they characterize different atmospheric constituents. However, it is 
also essential to remove redundant features in machine/deep learning 
applications. Therefore, only a subset of eight representative channels 
(see Table  2) are used due to the high correlations of some bands [8]. 
This is to reduce efforts in pre-processing satellite data and to improve 
the learning efficiency. In a more general case, one could further reduce 
the number of used spectral channels to investigate the effects on DNI 
estimations, but this is not within the scope of this work.

Spectral GOES-16 images of the eight bands with the time resolution 
of 5-min in years of 2019 and 2020 are extracted for the seven target 
SURFRAD stations. These images are sized at 11 × 11 pixels with the 
target station in the center, following the steps detailed in [8,29]. Note 
that there is a tradeoff between the spatial scale and computing effi-
ciency, and the improvement of modeling accuracy becomes marginal 
with large spatial size of satellite images [40]. Therefore, the use of 
11 × 11 pixels is adopted following several studies on satellite-based 
solar irradiance modeling [8,41] and cloud detection [27]. The packed-
scaled satellite measurements of each spectral band are converted 
to radiance using ‘scale factor’ and ‘add offset’ shown in Table  2 
(𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 𝑟𝑎𝑤 × 𝑠𝑐𝑎𝑙𝑒+offset , where 𝑟𝑎𝑤 is the packed-scaled value). 
4 
Note that the ABI is a multi-channel passive imaging radiometer, so 
the radiance received should not be less than zero. Therefore, spectral 
images with any negative radiance values are discarded. Since there are 
different spatial resolutions for the spectral bands (1–2 km as shown 
in Table  2), measurements of spectral channels with finer resolutions 
are re-scaled to 2-km. To be compatible with ground-level irradiance 
measurements, the end-of-scan timestamps in UTC, rounded to the next 
nearest 5-min interval (although with some inaccuracies), are used to 
index the spectral satellite images [8,29]. Some sample spectral images 
of the eight selected bands are presented in Fig.  2, for one of the target 
SURFRAD stations.

2.3. NSRDB data

As the state-of-the-art in satellite-based estimation of ground-level 
solar irradiance, NSRDB provides publicly available satellite-derived 
solar irradiance that can be applied in situations where the on-site 
measurements are not available [9]. NSRDB also provides many aux-
iliary variables (e.g., SZA, cloud type, and meteorological data), which 
can be accessed via https://nsrdb.nrel.gov/. The geographical coverage 
of NSRDB includes the United States and the number of other inter-
national locations is still growing [9,10]. NSRDB employs a physical 
solar model (PSM) to calculate solar radiation from satellite-derived 
cloud properties and data products (e.g., aerosol and water vapor) from 
a number of other associations [9]. As a serially complete database, 
NSRDB provides data with a coverage of more than 20 years. Using the 
high-resolution data from GOES-16 and -17, the spatio-temporal resolu-
tion of NSRDB has been improved to 5-minute–2-km since 2018, which 

https://nsrdb.nrel.gov/
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Table 2
Detailed description of the eight selected ABI spectral bands of GOES-16. The resolution is defined at the sub-satellite point. 
Channel types include visible, near-infrared (NIR), and infrared. Valid range is the range of packed-scaled value of satellite 
measurement, which can be converted to radiance using the scale factor and add offset. The nickname refers its characteristics 
for different applications.
 Channel 𝜆 (center 𝜆) [μm] Resolution [km] Type Valid range Scale factor (Add offset) Nickname  
 1 0.45–0.49 (0.47) 1 Visible 0–1022 0.8121 (−25.9366) Blue  
 3 0.846–0.885 (0.865) 1 NIR 0–1022 0.3769 (−20.2899) Veggie  
 4 1.371–1.386 (1.378) 2 NIR 0–2046 0.0707 (−4.5224) Cirrus  
 5 1.58–1.64 (1.61) 1 NIR 0–1022 0.0958 (−3.0596) Snow/Ice  
 6 2.225–2.275 (2.25) 2 NIR 0–1022 0.0301 (−0.9610) Cloud particle size  
 7 3.80–4.00 (3.90) 2 Infrared 0–16382 0.0016 (−0.0376) Shortwave window  
 9 6.75–7.15 (6.95) 2 Infrared 0–2046 0.0225 (−0.8236) Mid-level water vapor 
 11 8.30–8.70 (8.50) 2 Infrared 0–4094 0.0334 (−1.3022) Cloud-top phase  
Fig. 2. Sample raw GOES-16 images of the eight selected spectral for the Bondville (BON) station (40.05◦, −88.37◦) at 2020-01-13 18:30:00 (UTC). The whole 
images are sized of 21 × 21 pixels, where interested region is in the square of 11 × 11 pixels with BON (red point) located at the center.  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
was 30-minute–4-km before. The validation of 5-min irradiance data 
from NSRDB shows higher discrepancies due to the improved temporal 
resolution, for instance, Yang [17] reported that 5-min NSRDB GHI 
and DNI at SURFRAD stations have the normalized root mean squared 
error (nRMSE) in the range of 14.87%–38.33% and 21.11%–48.78%, 
respectively, in years of 2018 and 2019. However, the accuracy of DNI 
estimates in NSRDB has been enhanced with better cloud parameteri-
zations based on satellite data [11] and an improved DNI model under 
cloudy conditions [42,43]. This makes the 5-min NSRDB an important 
part in modern solar irradiance modeling and resource assessment.

Since NSRDB is based on the PSM with improved accuracy and 
availability, it has been extensively used in solar energy applica-
tions [9] and as benchmarks [8,29]. The 5-min DNI values and clear-sky 
DNI expectations from the most recent version of NSRDB [11] in years 
2019 and 2020 are downloaded for all SURFRAD stations. The clear-
sky DNI in NSRDB is obtained using the REST2 model [9,22], which is 
identified as one of the high-performance clear-sky models [44]. The 
5-min NSRDB DNI is used to benchmark the proposed satellite-to-DNI 
method due to its recent enhancements [11], and the clear-sky DNI esti-
mation is applied to normalize the DNI measurements, which is detailed 
in Section 3.1. Note that NSRDB and satellite-to-DNI estimation using 
deep learning are both satellite-derived irradiance products, although 
site-adaptation can improve the accuracy, this is not considered in this 
study.

3. Satellite-to-DNI with deep learning

Owing to the improvement of both computational ability and learn-
ing algorithms, deep learning has been extensively used in solar ir-
radiance estimation from satellite measurements [8,45]. Compared 
5 
with physical satellite-to-irradiance methods, for example, the PSM 
in NSRDB, deep learning offers simpler but more efficient represen-
tations in modeling the interaction between solar radiation and the 
atmosphere, especially when using spectral satellite images [8]. In the 
deep learning model for solar irradiance estimation using satellite data, 
the typical inputs are multi-spectral satellite images that can provide 
information for various atmospheric compositions (e.g., cloud, aerosol, 
and water vapor), and the output is usually the clear-sky index [1,
8]. The clear-sky index, as the ratio of irradiance measurement and 
its clear-sky expectation, is to remove the double-pattern seasonality 
of irradiance [8,46]. The clear-sky index is mainly applied to GHI 
normalization, as defined by: 

𝑘𝑐 = GHI∕GHIcs, (6)

where kc is the clear-sky index, GHIcs [W/m2] is the clear-sky GHI 
estimation.

3.1. Clear-sky index and clearness index for DNI

Similar to clear-sky index of GHI (𝑘𝑐), the clear-sky index of DNI 
(𝑘𝑐𝑏) can be defined by: 

𝑘𝑐𝑏 = DNI∕DNIcs, (7)

where DNIcs [W/m2] is the clear-sky DNI expectation of REST2 that is 
available in NSRDB. Apart from clear-sky index (𝑘𝑐 and 𝑘𝑐𝑏), clearness 
index can also be used to normalize the irradiance measurements [47]. 
Unlike the clearness index of GHI (𝑘𝑡) that is a ratio between the 
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GHI measurement and the horizontal projection of extraterrestrial solar 
irradiance (𝐸0), the clearness index of DNI (𝑘𝑡𝑏) is calculated by: 

𝑘𝑡𝑏 = DNI∕𝐸0, (8)

where 𝐸0 [W/m2] is the extraterrestrial solar irradiance [48].
Although there are different values for solar constant (𝐸𝑠𝑐) and 

equations for 𝐸0, for example, the currently accepted value of 𝐸𝑠𝑐 is 
1361 W/m2 [49], the calculation in this work follows the documen-
tation (𝐸𝑠𝑐 = 1366.10 W/m2) in PVLIB [50]. Note that the diurnal 
variation of 𝐸0 is not considered as the difference is negligible. The 
main difference between clear-sky index and clearness index is that 
clear-sky index takes the air mass and effect of other atmospheric 
compositions (e.g., aerosol and water vapor) into account, thus the 
attenuation on solar radiation is dominated by clouds; while clear-
ness index considers all effects from the atmosphere relative to the 
extraterrestrial irradiance.

3.2. Normalization of satellite data

Similarly, the diurnal effects of satellite data should be removed 
for the benefit of model training, as suggested in [1,8,27]. There are 
many methods have been proposed for normalizing satellite data and 
applied for solar irradiance modeling. Satellite measurements can be 
converted to cloud index [51], reflectance (for reflective bands) [45], 
and brightness temperature (for emissive bands) [39]. Some standard 
normalization methods such as Min–Max and Z-score can also be used 
to normalize the satellite data. Min–Max normalization takes the form:

𝐿𝑘 =
𝐿𝑘 −min(𝐿)

max(𝐿) −min(𝐿) , (9)

where 𝐿𝑘 is the 𝑘th normalized value of 𝐿, while min(𝐿) and max(𝐿) 
denote the minimum and maximum values in the entire dataset. There-
fore, the normalized value of 𝐿𝑘 is in the range of [0,1]. Z-score 
normalization, also called standardization, is in the form of: 

𝐿𝑘 = (𝐿𝑘 − 𝜇(𝐿))∕𝜎(𝐿), (10)

where 𝜇(𝐿) and 𝜎(𝐿) are the mean and standard deviation of the 
entire dataset 𝐿, respectively. Then, the normalized 𝐿̃ has a mean 
of 0 and standard deviation of 1. There are also other methods for 
normalizing satellite data, such as the use of cloud index [6]. For a more 
detailed description on pre-processing satellite data for solar irradiance 
modeling, the reader is referred to [1].

There are eight ABI channels (denoted as 𝑏) used (see Table  2) 
for deep learning based satellite-to-DNI, and the inputs are spectral 
satellite images rather than single pixels. The image normalization 
method proposed in [27] is adopted in this work, since it can remove 
the diurnal effect and weight each ABI band image equally for cloud 
detection with convolutional neural networks (CNNs) [27]. For each 
ABI channel 𝑏, the minimum (𝐿𝑏

min) and maximum (𝐿𝑏
max) value can 

be represented, respectively. The minimum and maximum values of 
each channel can be calculated using the valid range, scale factor, and 
add offset as shown in Table  2, and more details are available in [39]. 
The method for normalizing pixels in spectral satellite images can be 
expressed as: 

𝐿̃𝑏
𝑖𝑗 |𝑡 = 1 −

𝐿𝑏
𝑖𝑗 |𝑡 − 𝐿𝑏

min

cos (𝜃|𝑡)(𝐿𝑏
max − 𝐿𝑏

min)
, (11)

where 𝐿̃𝑏
𝑖𝑗 |𝑡 is the normalized pixel value situated at the 𝑖th row and 

𝑗th column in the spectral image of band 𝑏 at time 𝑡, 𝐿𝑏
𝑖𝑗 |𝑡 denotes the 

measured radiance of that pixel, and 𝜃|𝑡 represents the SZA at time 𝑡. 
Some sample normalized spectral images of GOES-16 are shown in Fig. 
3.
6 
Table 3
Hyperparameters shown in Fig.  4 for Bayesian optimization using the Keras-
Tuner.
 Hyperparameter Values  
 Optimizer Adam  
 Loss function Hubera (𝛿 = 1.0)  
 Learning rate [1e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3] 
 x1 range(min = 16, max = 128, step = 2)  
 a1, a2, a3, a4 [relu, gelu, selu, tanh]  
 x2, x3, x4, x5 range(min = 8, max = 64, step = 2)  
 a5 [relu, gelu, selu, linear]  
 Early Stopping With the patience equal to 5  
a Huber loss is less sensitive to outliers. 𝛿 defines the point where the Huber loss 
function becomes linear from a quadratic.

3.3. Deep learning model for DNI estimation

Due to the spatio-temporal nature of solar irradiance, it is more ben-
eficial to use grid satellite data in satellite-to-irradiance estimation with 
deep learning [2,40]. Similarly, all satellite bands that can be used for 
inferring atmosphere characteristics should be included in the inputs of 
the deep learning satellite-to-DNI model [38,45]. However, there are 
some GOES-16 bands highly correlated, and such redundant features 
should be removed in machine learning applications to improve the 
modeling efficiency [8]. Therefore, inputs used for DNI estimations 
are spectral satellite images as described in Section 2.2. Since CNNs 
are specialized in processing structured grid-like data (e.g., satellite 
images) and have shown superior performance to other machine learn-
ing models in satellite-based irradiance estimation [40], CNNs are 
used as the primary deep learning algorithm in extracting features 
from spectral satellite images. Given that this work aims to investigate 
the effectiveness of clearness index in satellite-based DNI estimation 
with deep learning methods rather than to develop any advanced 
data-driven models, the model used follows a framework similar to 
that of [8]. The deep learning model employs CNNs, attention layer, 
and fully connected dense networks as presented in Fig.  4(a). In the 
framework, CNNs are to provide specialized neural networks to extract 
features from satellite images via convolution and pooling with reduced 
amount of parameters. As feed-forward neural networks designed to 
deal with data with a grid-structured topology, CNNs are computation-
ally efficient in implementation and hyperparameters tuning [52]. As 
shown in Fig.  4(b), the convolutional layer is to extract spatial features 
from the input: 
𝑦𝑘 = 𝑓 (𝑤𝑘 ∗ 𝑥), (12)

where 𝑦𝑘 and 𝑤𝑘 denote the extracted feature and trainable weights 
of the 𝑘th kernel, 𝑥 is the input, ∗ is the convolution operator, and 𝑓
represents a nonlinear activation function, where Rectified Linear Unit 
(ReLU) is one of the representatives, as defined by: 
𝑓 (𝑥) = max(0, 𝑥). (13)

Pooling layers are usually grouped with convolutional layers to 
modify the output and to reduce the dimension gradually with max-
imum or average of features over local regions [52]. The MaxPooling 
that forwards the maximum value over the 2 × 2 rectangular neigh-
borhood is adopted in this work (see Fig.  4(b)). The attention layer 
(with one attention head) is based on the attention mechanism [53] 
as illustrated in Fig.  4(c), which can enable the model focus more on 
the target area and improve the learning performance [54,55]. The 
attention mechanism is expressed as: 
Attention(𝑄,𝐾, 𝑉 ) = Softmax(𝑄 ⋅𝐾𝑇 ∕

√

𝑑𝑘) ⋅ 𝑉 , (14)

where 𝑄,𝐾, 𝑉  represent the query, key, and value matrices with the 
dimension of 𝑑𝑘, respectively. While the dense layers are applied to 
learn the relationships between the extracted features and targets.



S. Chen et al.

Fig. 3. Sample normalized spectral GOES-16 images of the eight selected spectral for Bondville (BON) station (40.05◦, −88.37◦) at 2020-01-13 18:30:00 (UTC). 
The whole images are sized of 21 × 21 pixels, where interested region is in the square of 11 × 11 pixels with BON (red point) located at the center. The 
normalization method is adopted from [27].  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 4. The framework of (a) the deep learning model for DNI estimation from spectral satellite images, where x𝑖 denotes the number of filters, a𝑖 means the 
activation function, and the output could be clear-sky index or clearness index of DNI. (b) and (c) show the structure of convolutional neural network and 
attention mechanism used in (a), respectively.
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Table 4
The RMSE and MBE in [Wm−2], and nRMSE and nMBE in [%], of 5-min-2-km DNI estimations using deep learning 
models with normalized satellite data and different outputs: clear-sky index (𝑘𝑐𝑏) and clearness index (𝑘𝑡𝑏), at 
all SURFRAD stations. Results on DNI estimation of NSRDB are included as the benchmark, where NSRDB AVG 
represents the averaged values across the 11 × 11 region same as the used size of used spectral satellite images.
 RMSE [Wm−2] (nRMSE [%])
 𝑘𝑐𝑏 𝑘𝑡𝑏 NSRDB NSRDB AVG  
 BON 141.76 (22.73) 142.20 (22.80) 165.22 (25.49) 150.66 (24.21) 
 DRA 126.54 (15.47) 122.13 (14.93) 146.51 (17.91) 136.57 (16.69) 
 FPK 181.50 (29.84) 192.23 (31.60) 206.91 (34.01) 192.18 (31.59) 
 GWN 154.77 (25.48) 152.19 (25.06) 209.88 (34.56) 185.74 (30.65) 
 PSU 172.58 (30.37) 176.12 (30.99) 219.72 (38.67) 192.54 (33.84) 
 SXF 166.39 (26.80) 170.04 (27.39) 217.36 (35.01) 201.61 (32.46) 
 TBL 169.00 (24.67) 167.31 (24.43) 205.76 (30.04) 197.69 (28.82) 
 MBE [Wm−2] (nMBE [%])
 𝑘𝑐𝑏 𝑘𝑡𝑏 NSRDB NSRDB AVG  
 BON −19.50 (−3.12) −16.99 (−2.72) 49.74 (7.97) 41.11 (6.61)  
 DRA 10.82 (1.32) 15.33 (1.87) 19.17 (2.34) 20.30 (2.48)  
 FPK −30.47 (−5.01) −1.27 (−0.21) 46.64 (7.67) 42.49 (6.99)  
 GWN −26.47 (−4.36) −12.21 (−2.01) 50.69 (8.35) 43.69 (7.21)  
 PSU −0.19 (−0.01) −9.90 (−1.74) 48.20 (8.48) 38.93 (6.84)  
 SXF −26.64 (−4.29) −34.91 (−5.62) 76.57 (12.34) 58.94 (9.49)  
 TBL −32.43 (−4.74) 2.50 (0.36) 30.32 (4.43) 29.81 (4.35)  
Following a similar methodology adopted in [8], cropped spectral 
satellite images of the eight representative GOES-16 bands are used 
as inputs for DNI estimation with deep learning. The main difference 
is that spectral satellite images of the eight selected bands are con-
catenated before feeding to CNNs in this work, while in [8], spectral 
images of each band are processed separately and then concatenated. 
As shown in Fig.  4(a), in satellite-based DNI estimation with deep 
learning, the spectral satellite images are processed parallelly via batch 
normalization, then concatenated and fed to convolutional, pooling, 
and attention layers. Subsequently, the extracted features are flattened 
as an input vector, which is then used in fully connected dense layers 
for learning the representation. The L2 regularization applied in dense 
layers and Early Stopping are used to avoid over-fitting and improve 
the performance. The output is the clear-sky index or clearness index 
of DNI as defined in Section 3.1. The DNI clear-sky index and clearness 
index can be converted back to DNI estimations (with 5-min temporal 
resolution and 2-km spatial resolution) by multiplying clear-sky DNI 
expectation of REST2 and extraterrestrial solar irradiance, respectively.

Although deep learning satellite-to-DNI models share the same 
structure, the hyperparameters could be different for the two outputs 
(i.e., the clear-sky index and clearness index) and for the seven stations. 
Therefore, models for each output and for each SURFRAD site are 
trained separately, and the hyperparameters are tuned using Bayesian 
optimization of KerasTuner [56] using the settings shown in Table  3. 
Data in 2019 are used as training (80%) and validation (20%) sets, 
and data in 2020 are used for testing. The performance evaluation 
metrics are root mean squared error (RMSE), mean bias error (MBE), 
their normalized counterparts (nRMSE, nMBE) [8], and the coefficient 
of determination (𝑅2), as defined by: 

RMSE =
√

1
𝑁

∑

(𝑒𝑘 − 𝑜𝑘)2, (15)

nRMSE =

√

1
𝑁

∑

(𝑒𝑘 − 𝑜𝑘)2

1
𝑁

∑

𝑜𝑘
, (16)

MBE = 1
𝑁

∑

(𝑒𝑘 − 𝑜𝑘), (17)

nMBE =
∑

(𝑒𝑘 − 𝑜𝑘)
∑

𝑜𝑘
, (18)

𝑅2 = 1 −
∑

(𝑒𝑘 − 𝑜𝑘)2
∑

(𝑒𝑘 − 𝑜𝑘)2
, (19)

where 𝑒𝑘 and 𝑜𝑘 are the pair of DNI estimation and ground observation, 
𝑜𝑘 is the mean of observations, 𝑁 is the total number of compared data 
points.
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4. Results and discussion

4.1. Comparison between clearness index and clear-sky index with normal-
ized satellite data

As shown in Table  4, compared with DNI estimations of NSRDB, 
deep learning satellite-to-DNI methods using either clear-sky index 
or clearness index generally show lower uncertainties in terms of 
RMSE and MBE. Regardless of the used outputs, deep learning satellite-
to-DNI methods show comparatively lower nRMSE in the range of 
14.93%–31.60% than NSRDB (17.91%–38.67%). Similarly, the nMBE 
of deep learning satellite-to-DNI methods shows lower absolute biases 
(0.01%–5.62%), while DNI estimation in NSRDB has the nMBE range 
of 2.34%–12.34%. Although averaging NSRDB data across the 11 × 11 
region shows improvements (see the comparison between NSRDB and 
NSRDB AVG), the errors of MBE and RMSE are still higher than those of 
deep learning models. Generally, the physical satellite-to-DNI method 
(e.g., NSRDB) overestimates DNI with comparatively higher biases, 
while deep learning methods show slightly underestimations (see Table 
4). This confirms that the DNI estimation in NSRDB should be post-
processed with available on-site measurements and deep learning has 
the potential to reduce uncertainties (e.g., RMSE and MBE) in solar 
resource assessment with satellite measurements. When comparing the 
used output for satellite-to-DNI with deep learning, clear-sky index and 
clearness index generally show comparable performance. In terms of 
nRMSE, using clear-sky index as the output produces DNI estimation 
with the nRMSE in the range of 15.47%–30.37%, while using clearness 
index as the output generates a result with the nRMSE in the range of 
14.93%–31.60%. When it comes to the bias, DNI estimation with clear-
sky index exhibits slightly lower absolute nMBE values (0.01%–5.01%), 
while those based on clearness index are in the range of 0.36%–5.62%. 
This means clearness index can be used as an alternative label in deep 
learning satellite-to-DNI for improved efficiency.

The scatter plots of DNI estimation-measurement from three meth-
ods, namely, the physical method of NSRDB and two deep learning 
methods based on clear-sky index and clearness index, are presented 
in Fig.  5. It can be observed that the high-density DNI estimation-
measurement points are distributed along with the identity line, which 
means DNI estimations have a correct time alignment with DNI mea-
surements. The points near the identity line, especially at the range 
of high DNI measurements, have much higher densities than else-
where. This indicates that DNI estimations for clear and less cloudy sky 
conditions have a higher accuracy than those in cloudy and overcast 
periods.
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Fig. 5. Scatter plots of DNI estimation–measurement pairs, from three satellite-to-DNI methods, namely, physical method of NSRDB and deep learning methods 
with clear-sky index (𝑘𝑐𝑏) and clearness index (𝑘𝑡𝑏), at seven SURFRAD stations. The number in each subplot is the coefficient of determination (𝑅2) between 
DNI estimations and measurements, a higher 𝑅2 indicates a better performance.
Table 5
The RMSE and MBE in [Wm−2], and nRMSE and nMBE in [%], of DNI estimations using different deep learning 
models at SURFRAD stations. ‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while 
‘‘𝑘𝑡𝑏_UNS’’ represents the method based on unnormalized satellite data and clearness index.
 RMSE [Wm−2] (nRMSE [%]) MBE [Wm−2] (nMBE [%])
 𝑘𝑐𝑏 𝑘𝑡𝑏_UNS 𝑘𝑐𝑏 𝑘𝑡𝑏_UNS  
 BON 141.76 (22.73) 136.00 (21.80) −19.50 (−3.12) 0.53 (0.09)  
 DRA 126.54 (15.47) 112.35 (13.73) 10.82 (1.32) −21.42 (−2.62)  
 FPK 181.50 (29.84) 164.13 (26.98) −30.47 (−5.01) −7.66 (−1.26)  
 GWN 154.77 (25.48) 134.49 (22.15) −26.47 (−4.36) −6.59 (−1.09)  
 PSU 172.58 (30.37) 159.44 (28.06) −0.19 (−0.01) 14.54 (2.56)  
 SXF 166.39 (26.80) 147.09 (23.69) −26.64 (−4.29) −22.84 (−3.68) 
 TBL 169.00 (24.67) 139.41 (20.35) −32.43 (−4.74) −21.81 (−3.18) 
The lower 𝑅2 values in subplots of Fig.  5 show that DNI estima-
tions in NSRDB have an inferior performance compared with those 
of deep learning satellite-to-DNI methods. Meanwhile, it can be ob-
served that there are more points of NSRDB distributed above the 
identity line, which means NSRDB tends to generate high-estimation-
low-measurement errors. This overestimation usually leads to posi-
tive biases as shown in Table  4. It can be inferred that physical 
method of NSRDB underestimates the cloud amount using satellite 
measurements [8] for DNI estimations. Compared with the scatter plots 
of estimation-measurement for NSRDB, deep learning satellite-to-DNI 
methods generally do not show obvious over-estimations (points above 
the diagonal line) or under-estimations (points below the diagonal 
line). The refined biases and improved 𝑅2 values indicate that deep 
learning can enhance the satellite-to-DNI conversion with better extrac-
tion of cloud information from spectral satellite measurements, where 
the use of clearness index can improve the modeling efficiency.

4.2. The role of normalizing satellite data

As mentioned in Section 3.1, the clear-sky index and clearness index 
for normalizing DNI are based on different calculations, the former 
employs clear-sky DNI estimation, while the latter uses extraterrestrial 
solar radiation. As they have different physical meanings in represent-
ing attenuation effects of the atmosphere, this section is to discuss 
how to use satellite data in deep learning satellite-to-DNI methods 
with different outputs, namely, clear-sky index and clearness index 
with normalized and unnormalized satellite data, respectively. Note 
that even spectral satellite measurements are not normalized, the batch 
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normalization layer is still employed in the deep learning model as 
shown in Fig.  4.

The comparison of two deep learning satellite-to-DNI methods with 
different inputs and outputs is presented in Table  5. Generally, deep 
learning method (𝑘𝑡𝑏_UNS) based on clearness index and unnormalized 
satellite data yields DNI estimations with lower uncertainties than the 
model (𝑘𝑐𝑏) using normalized satellite data and clear-sky index. In 
terms of nRMSE, satellite-to-DNI estimations based on clearness index 
have the error in the range of 13.73%–28.06%. This is comparatively 
lower than the nRMSE of DNI estimations based on clear-sky index 
(15.47%–30.37%), across all seven SURFRAD stations. Meanwhile, the 
absolute bias of DNI estimations based on clear-sky index is in the 
range of 0.01%–5.01%, while those of the method using clearness index 
have the bias of 0.09%–3.68% (absolute value). The nRMSE values of 
DNI estimations with clearness index are typically lower than those 
based on clear-sky index at all SURFRAD stations. The reason might 
be that the errors of REST2 in calculating clear-sky DNI expectation 
introduce a higher uncertainty in the clear-sky index, which could 
lead to error accumulations in the DNI estimations. Although there 
is no obvious trend observed regarding the bias for DNI estimation, 
the absolute bias of DNI estimation with clearness index is relatively 
less than those based on the clear-sky index. This demonstrates that 
clearness index can be used for satellite-based DNI estimation with 
reduced uncertainties.

To further evaluate the performance of DNI estimations based on the 
two indexes and NSRDB, the marginal distributions of DNI estimations 
and measurements are shown in Fig.  6. The number in each subplot 
represents the Wasserstein distance (also called the optimal transport 
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Fig. 6. Marginal distributions of DNI estimations and measurements, from two deep learning satellite-to-DNI methods and NSRDB, at seven SURFRAD stations. 
‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while ‘‘𝑘𝑡𝑏_UNS’’ represents the method based on unnormalized satellite data 
and clearness index. The number in each subplot means the Wasserstein distance between two distributions, a smaller Wasserstein distance indicates a higher 
similarity.
distance) that describes the similarity between two probability distribu-
tions. It is then obvious that DNI estimations based on clearness index 
generally show higher similarity to the measurements than those from 
clear-sky index and NSRDB. It can also be observed that deep learning 
satellite-to-DNI methods tend to underestimate DNI at both high- and 
low-irradiance conditions, while the over-estimation usually occurs at 
the medium-irradiance condition. As for NSRDB, the over-estimation 
at high-irradiance conditions and under-estimation at low-irradiance 
condition are more obvious. DNI estimations from clearness index gen-
erally show more agreements with the measurements at all conditions 
compared with those based on the clear-sky index and NSRDB.

Based on the comparisons presented in Table  5 and Fig.  6, in 
deep learning based satellite-to-DNI estimation, the use of clearness 
index generally produces an improved overall result than applying 
the clear-sky index. This means clearness index can better represent 
attenuation effects of the atmosphere. Besides the improved perfor-
mance in satellite-based DNI estimation with deep learning, clearness 
index can offer two more advantages: (1) clearness index based on 
extraterrestrial solar radiation is easier to obtain than clear-sky index, 
as the implementation of a high-accuracy clear-sky model (e.g., REST2) 
requires much more efforts; (2) The normalization of spectral satellite 
data is not required in deep learning satellite-to-DNI methods with 
clearness index, which saves a lot of time and computing resources 
in data pre-processing. These advantages on accuracy and efficiency 
are more obvious for satellite-to-DNI estimation with deep learning for 
regional or national satellite-to-irradiance applications.

4.3. Further comparison and error analysis

Since clouds are the main factor attenuating solar radiation on the 
ground level, further comparisons of DNI estimations using clear-sky 
index (𝑘𝑐𝑏 with normalized satellite data) and clearness index (𝑘𝑡𝑏_UNS 
with unnormalized satellite data) under different sky conditions are 
presented in this section. Sky conditions are classified using the Bright-
Sun clear-sky detection algorithm with 1-min data [57], where a 5-min 
period is marked clear-sky only if all 1-min data points within it are 
detected as clear; otherwise, it is classified as cloudy. Note that cloudy 
is different from overcast (when DNI should be zero), and specific 
cloud types are not classified but generally grouped as cloudy (the 
percentages of cloudy periods at SURFRAD stations are in the range of 
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50.12%–85.36% [29]). This is different from the method used in [58] 
with cloud fractions. Table  6 shows the result of DNI estimations with 
two deep learning satellite-to-DNI methods (𝑘𝑐𝑏 and 𝑘𝑡𝑏_UNS) and 
NSRDB, under cloudy and clear sky conditions. It can be observed 
that DNI estimations under cloudy skies are generally associated with 
larger uncertainties than those of clear periods. NSRDB tends to have 
overall lower errors under clear skies due to the use of REST2 clear-
sky model. However, there are also some cases when DNI estimations 
have larger divergences (see the RMSE/nRMSE values at FPK and PSU 
for deep learning based methods, and GWN and SXF for NSRDB, in 
Table  6). The possible reason is that DNI is more sensitive to the 
atmospheric compositions (e.g., aerosol and water vapor under clear 
skies) than GHI, the retrieval of DNI from satellite measurements faces 
more challenges and thus are with higher discrepancies. This has also 
been observed in other physical, empirical, or data-driven methods for 
DNI estimations under clear sky conditions [8,34]. Although clouds are 
known as the primary factor affecting solar radiation and many studies 
have been conducted on cloud detection from satellite images, the 
retrieval of other atmospheric constitutes, namely, aerosol and water 
vapor, is also crucial for satellite-to-DNI estimations.

When comparing deep learning satellite-to-DNI methods with the 
two indexes, although there are some site-specific differences under 
clear-sky conditions, DNI estimations based on clear-sky index gen-
erally show larger nRMSE values (4.03%–15.42%) than those based 
on clearness index (4.02%–14.41%). The reason could that the used 
spectral satellite bands may not be able to effectively capture the 
information on aerosols and water vapor in clear-sky conditions. More-
over, DNI estimations based on clearness index typically have lower 
biases with the absolute nMBE in the range of 0.67%–5.79%, while 
the absolute biases of DNI estimations using clear-sky index ranges 
1.21%–10.29%. When it comes to cloudy conditions, NSRDB generally 
show higher uncertainties for RMSE and MBE, while DNI estima-
tions based on clearness index have reduced nRMSE in the range of 
23.83%–34.06%, which are comparatively lower than those from clear-
sky index (27.31%–36.97%). DNI estimations based on clearness index 
also tend to have lower biases with the absolute nMBE of 0.28%–3.48% 
than those with clear-sky index (0.90%–4.10%). Although using clear-
ness index in satellite-to-DNI estimation may result in some slightly 
enlarged errors in clear sky conditions as shown in Table  6, clearness 
index is still an promising alternative target in deep learning satellite-
to-DNI estimations, with the potential to reduce the uncertainties for 
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Table 6
The RMSE and MBE in [Wm−2], and nRMSE and nMBE in [%], of DNI estimation using different deep learning models at SURFRAD stations under clear and 
cloudy conditions. ‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while ‘‘𝑘𝑡𝑏_UNS’’ represents the method based on unnormalized 
satellite data and clearness index.
 Sky condition Station RMSE [Wm−2] (nRMSE [%]) MBE [Wm−2] (nMBE [%])
 𝑘𝑐𝑏 𝑘𝑡𝑏_UNS NSRDB 𝑘𝑐𝑏 𝑘𝑡𝑏_UNS NSRDB  
 

Clear

BON 68.55 (7.99) 84.87 (9.89) 37.08 (4.32) −36.78 (−4.28) −14.76 (−1.72) 12.94 (1.51)  
 DRA 38.30 (4.03) 42.07 (4.42) 39.44 (4.15) −11.53 (−1.21) −25.00 (−2.63) −18.93 (−1.99) 
 FPK 134.64 (15.42) 125.82 (14.41) 58.68 (6.72) −89.86 (−10.29) −50.58 (−5.79) 2.25 (0.26)  
 GWN 47.06 (5.32) 35.59 (4.02) 122.44 (13.85) −32.13 (−3.63) −5.90 (−0.67) −28.90 (−3.27) 
 PSU 53.81 (6.09) 57.71 (6.53) 50.33 (5.70) −23.34 (−2.64) 14.10 (1.60) −4.33 (−0.49)  
 SXF 102.35 (12.00) 83.75 (9.82) 109.66 (12.86) −52.24 (−6.13) −32.23 (−3.78) −0.45 (−0.05)  
 TBL 90.59 (9.79) 54.82 (5.93) 71.14 (7.69) −52.36 (−5.66) −25.48 (−2.75) −0.32 (−0.03)  
 

Cloudy

BON 157.53 (28.27) 148.26 (26.61) 187.57 (33.66) −14.61 (−2.62) 5.44 (0.98) 60.62 (10.88)  
 DRA 178.16 (27.31) 155.31 (23.83) 215.23 (33.00) 20.79 (3.19) 1.85 (0.28) 66.78 (10.24)  
 FPK 191.95 (35.64) 172.82 (32.09) 230.63 (42.83) −14.75 (−2.74) 3.71 (0.69) 58.38 (10.84)  
 GWN 178.66 (33.58) 156.08 (29.33) 232.82 (43.76) −22.64 (−4.26) −8.54 (−1.61) 76.85 (14.44)  
 PSU 187.50 (36.97) 172.72 (34.06) 239.57 (47.24) 4.56 (0.90) 14.63 (2.88) 58.51 (11.54)  
 SXF 185.20 (33.66) 164.73 (29.94) 242.19 (44.01) −17.93 (−3.26) −18.15 (−3.30) 102.00 (18.54)  
 TBL 193.07 (33.12) 162.70 (27.91) 241.39 (41.40) −23.90 (−4.10) −20.30 (−3.48) 43.33 (7.43)  
Fig. 7. The nRMSE [%] and nMBE [%] of DNI estimations, from two deep learning satellite-to-DNI methods and NSRDB, in different intervals of solar zenith 
angle (SZA), at seven SURFRAD stations. ‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while ‘‘𝑘𝑡𝑏_UNS’’ represents the method 
based on unnormalized satellite data and clearness index.
all-sky DNI estimations. However, future studies on how to use clear-
ness index in satellite-to-DNI estimation with deep learning under 
clear-sky conditions should be conducted to improve the accuracy.

The nRMSE and nMBE of DNI estimations in different intervals of 
SZA with the two methods (𝑘𝑐𝑏 and 𝑘𝑡𝑏_UNS) and NSRDB are presented 
in Fig.  7 to further evaluate their performance. It is shown that DNI 
estimations of NSRDB show comparatively larger errors of nRMSE and 
nMBE across all SZA intervals. DNI estimations based on clearness 
index generally have lower nRMSE values than those with clear-sky 
index across different intervals of SZA at all SURFRAD stations. Overall, 
DNI estimations with clearness index tend to have relatively smaller 
biases. As mentioned in Section 3.1, the SZA is corresponded to the air 
mass that describes the direct optical path through the atmosphere (a 
higher SZA indicates a larger air mass). The lower discrepancies of DNI 
estimations in different intervals of SZA may indicate that clearness 
index with unnormalized satellite data could better account for the 
attenuation on DNI when passing through the atmosphere at different 
optical lengths. Since modern geostationary satellites are equipped with 
more advanced sensors with increased spectral responses and spatio-
temporal resolutions, the multi-spectral satellite measurements could 
be used in data-driven satellite-to-DNI estimations to better extract the 
information on atmospheric compositions. This is not limited to clouds 
but also includes water vapor, aerosols, and other components, where 
the clearness index may be a better indicator to represent the optical 
path that DNI passes through in the atmosphere.
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4.4. Generic applicability of the proposed method

The use of clearness index in satellite-to-DNI estimation with deep 
learning shows promising results when the model is trained and tested 
using data from the station of interest itself. This section is to explore 
the generic applicability of the proposed method across different sta-
tions, where the models are trained with data from several selected 
locations and then applied to other sites that are not involved with 
the model training. Since the seven SURFRAD stations are distributed 
in different climate zones as shown in Fig.  1, only using data from 
one station to train the model might have a poor performance at 
other locations, especially for locations with different climate charac-
teristics [16,46]. Therefore, the transferred models in this section are 
trained using data from five stations, and then applied at two excluded 
stations for DNI estimations in 2020. There are four stations in total 
involved in this evaluation, namely, SXF and TBL (the model is trained 
using data from BON, DRA, FPK, GWN, and PSU), and FPK and GWN 
(the model is developed with data from BON, DRA, PSU, SXF, and TBL).

The overall results of the two transferred models, namely, one 
based on clear-sky-index and normalized satellite data (𝑘𝑐𝑏_T) and the 
other based on clearness index and unnormalized data (𝑘𝑡𝑏_UNST), are 
shown in Fig.  8. Compared with the locally trained model of 𝑘𝑡𝑏_UNST, 
transferred methods have relatively higher nRMSE values, but still 
less than those of NSRDB. For the decreased nRMSE of transferred 
methods compared with 𝑘𝑐𝑏 at FPK, GWN, and SXF, the possible reason 
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Fig. 8. Comparison of the nRMSE [%] and nMBE [%] of DNI estimations in 2020, from different methods, at stations of Fort Peck (FPK), Goodwin Creek (GWN), 
Sioux Falls (SXF), and Table Mountain (TBL). ‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while ‘‘𝑘𝑡𝑏_UNS’’ represents the 
method based on unnormalized satellite data and clearness index. ‘‘𝑘𝑐𝑏_T’’ and ‘‘𝑘𝑡𝑏_UNST’’ are the methods trained without using data from SXF and TBL based 
on ‘‘𝑘𝑐𝑏’’ and ‘‘𝑘𝑡𝑏_UNS’’, respectively.
Fig. 9. A time series comparison of DNI measurements and estimations from different methods at Table Mountain (TBL) station, where nighttime periods are 
excluded. ‘‘𝑘𝑐𝑏’’ denotes the method using normalized satellite data and clear-sky index, while ‘‘𝑘𝑡𝑏_UNS’’ represents the method based on unnormalized satellite 
data and clearness index. ‘‘𝑘𝑐𝑏_T’’ and ‘‘𝑘𝑡𝑏_UNST’’ are the methods trained without using data from SXF and TBL based on ‘‘𝑘𝑐𝑏’’ and ‘‘𝑘𝑡𝑏_UNS’’, respectively.
could be the benefit from data of multiple locations for representation 
learning. NSRDB also show overall larger biases than the transferred 
models (see Fig.  8). In addition, a sample time series comparison of 
DNI measurements and estimations from different methods at TBL are 
presented in Fig.  9. It can be observed that NSRBD sometimes exhibits 
comparatively larger deviations, while others can capture the fluctu-
ations of the DNI measurements but are also associated with varying 
uncertainties. Nevertheless, clearness index can be used as a better 
target in deep learning based satellite-to-DNI estimation for both local 
and transferred applications, which can enhance the modeling accuracy 
and efficiency. This is even more beneficial for regional applications.

5. Conclusions

Owing to the scarcity of in-situ irradiance measurements, satellite-
derived irradiance usually serves as one of the alternative data sources 
in solar resource assessment. Nonetheless, satellite-derived irradiance 
of DNI shows high uncertainties. As DNI is also an indispensable part 
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in solar energy applications, this work aims to improve 5-min satellite-
based DNI estimation with clearness index and deep learning methods. 
Compared with physical methods, deep learning is likely to yield better 
overall DNI estimations with satellite data. Results also show that 
clearness index can be used as the target in deep learning models to 
produce comparable 5-min satellite-based DNI estimations with the 
clear-sky index. This provides additional benefits in satellite-based DNI 
estimations, as clearness index can be easily calculated, while clear-
sky index usually requires extra efforts in implementing the clear-sky 
model.

Clearness index and Clear-sky index of DNI account for the at-
tenuation effects of atmospheric compositions in different ways, the 
former considers the direct optical path that DNI passes through while 
the latter is more focused on the cloud. This indicates that the pre-
processing methods of satellite data should be different. It is found 
that clearness index based DNI estimation with unnormalized satellite 
inputs tend to have better performance than those based on clear-
sky index and normalized satellite data. The reason might be that 
clearness index and unnormalized satellite data could better reflect 
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the interactions between DNI and the atmosphere. With unnormalized 
satellite data, clearness index based DNI estimation can further improve 
the efficiency in regional 5-min satellite-to-DNI conversions.

Under the evaluation of different sky conditions, satellite-based DNI 
estimations with deep learning tend to underestimate DNI at both high- 
and low-irradiance conditions and clouds are still the root cause of 
large errors. DNI estimations with clearness index sometimes also face 
enlarged errors in clear-sky conditions. These sources of larger discrep-
ancies indicate that more efforts are still needed in better extracting 
cloud and other atmospheric information from spectral satellite images 
and representing the long optical path that DNI travels through at 
high SZAs. Nevertheless, the use of clearness index in satellite-based 
DNI estimation with deep learning provides an alternative to improve 
the accuracy and efficiency, which is also applicable for transferred 
applications where ground-based training data is not available. Apart 
from the improved performance, satellite-to-DNI with clearness index 
offers additional advantages on data pre-processing and computing 
resources, which is more beneficial for large-scale applications.
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