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a b s t r a c t

We develop a hybrid, real-time solar forecasting computational model to construct prediction intervals
(PIs) of one-minute averaged direct normal irradiance for four intra-hour forecasting horizons: five, ten,
fifteen, and 20 min. This hybrid model, which integrates sky imaging techniques, support vector machine
and artificial neural network sub-models, is developed using one year of co-located, high-quality irra-
diance and sky image recording in Folsom, California. We validate the proposed model using six-month
of measured irradiance and sky image data, and apply it to construct operational PI forecasts in real-time
at the same observatory. In the real-time scenario, the hybrid model significantly outperforms the
reference persistence model and provides high performance PIs regardless of forecast horizon and
weather condition.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy technologies are both functionally ready and nearly
financially competitive to be deployed at large scales to produce
clean and renewable power. However, the increasing levels of solar
penetration into the power grid and the associated variable nature
of solar irradiance caused by atmospheric processes impose chal-
lenges to grid management [1,2]. Solar forecasting is an enabling
technology to mitigate the instabilities associated with the vari-
ability of solar power generation [1,3e5].

There has been strong research interest in developing effective
solar forecasting methodologies for the various temporal horizons
of interest to solar integration. Most of these models are based on
statistical (data-driven) methods [6e20] or physical methods based
on either remote sensing or local sensing [3,18,19,21e26]. Hybrid
forecasting models that make use of the advantages of both sto-
chastic learning and physical models have been developed in the
recent years [18,19,27,28].

All of the above models produce point or time-average forecasts
without projecting the uncertainty intervals of the predictions. In
practice, there are inherent and irreducible forecasting errors
associated with deterministic point forecasts regardless of the data
ra).
processing, the mechanism of model, the explanatory variables,
and the model training methods [29e31]:

TðtÞ ¼ f ðtÞ þ εðtÞ; (1)

where T(t) is the measured (target) value at time t, f(t) is the true
regression, and εðtÞ is the unbiased noise. Prediction intervals (PIs),
in which target values T will fall with a probability, quantify the
uncertainty of forecasts, and therefore are more useful than point
predictions for decision-making in real-world applications
[29,30,32,33].

Therefore in this work, we develop a smart forecasting model
(denoted as the Hybrid model) to provide intra-hour PIs for one-
minute averaged Direct Normal Irradiance (DNI), which is the en-
ergy source for concentrated solar power technologies and is highly
variable due to the direct influence of cloud cover [27]. The Hybrid
model integrates Support Vector Machine (SVM) method and
Artificial Neural Networks (ANNs) method. The inputs to this
Hybrid model are lagged time series of numerical local-sensing
information, DNI, and diffuse irradiance (DIF). The Hybrid model
first uses the SVM to classify the time series of DNI into two cate-
gories: low DNI variability period (lv) and high DNI variability
period (hv). Then PIs are generated by ANNlv or ANNhv which are
trained with data collected in lv and hv periods, respectively. The
prediction horizons of PIs are 5, 10, 15, and 20 min. The Hybrid
model is validated in terms of common statistical metrics as well as
three performance metrics: PI coverage probability (PICP), PI
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normalized average width (PINAW), and coverage width-based
criterion (CWC) (explained in Section 3.7). The validation perfor-
mance of Hybrid model is compared with the performance of two
referencemodels: a persistencemodel and a Bootstrap-ANNmodel.
After the validation, the Hybrid model and the persistence model
have been mounted on a CPU server at UCSD and have been pro-
ducing real-time PI forecasts since July 1st, 2014.

In this paper: the preparation of data used in the Hybrid model
development is presented in Section 2. The detailed methods used
to create the Hybrid model and the two reference models are
presented in Section 3, in which the performance metrics used to
assess the accuracy of PIs are also discussed. The results are pre-
sented in Section 4 and conclusions are presented in Section 5.

2. Data

DNI and DIF data are collected using a Rotating Shadowband
Radiometer (Augustyn RSR-2, Manufactured by Irradiance, Inc)
installed in Folsom, California (latitude ¼ 38.6429�N,
longitude ¼ 121.1487�W). The RSR-2 simultaneously measures the
DNI and DIF components of broadband solar irradiance every 30 s,
and a Campbell Scientific CR1000 data logger is used to log the
irradiance values. 8-bit RGB sky images (1536 � 1536 pixels) are
collected every minute using a generic off-the-shelf, high-resolu-
tion fisheye dome network camera installed next to the RSR-2s.
This fish-eye camera uses a 3.1 MP CMOS sensor and a 360�

panoramic view lens. The captured sky images (see sample images
in Fig. 1) are transferred via FTP to a the UCSD server every minute.
The irradiance data and the sky images are stored in a MySQL
database and are paired as data points.

One year (January 13, 2013 to Dec 31, 2013) of historical data are
assigned as a training set for model training. Six months (January 1,
2014 to June 11, 2014) of historical data are assigned as a validation
set for model validation. Both the training and validation sets
include the possible range of irradiance variability caused by
diverse weather conditions. After the model training and validation
process (discussed in Section 3), we launched themodel in realtime
to forecast intra-hour DNI for Folsom. The launched forecasts have
Fig. 1. Examples of original images (top row) and normalized RBR (nRBR) images (bottom ro
column) period. The greyscales indicate the nRBR magnitudes in each image.
been operating every fiveminutes as unattended task since July 1st,
2014 using live stream of paired irradiance and sky image data from
the Folsom observatory.

Data quality is essential for the robustness and accuracy of the
forecasts. The RSR-2 is a first-class radiometer that meets the ac-
curacy requirements of this study. The fisheye lens is regularly
cleaned to maintain the quality of sky images, and sky images with
excessive amount of dust are manually removed from the database.
For low sun elevation time, ground obstacles (e.g. trees) adversely
affect the accuracy of irradiance measurements. Therefore, the
forecasts introduced in this work only consider data points
collected during the period when the solar elevation angle is higher
than 15�.

3. Methods

In this sectionwe first discuss the image processingmethod that
extracts numerical information of cloud cover (as the inputs to the
employed forecasting models). Then we discuss the ANN method,
the SVM method, and key steps to generate PIs for the persistence
model, the Bootstrap-ANN model, and the Hybrid model. The
metrics used to assess the performance of all models are discussed
at the end of this section.

3.1. Image processing and numerical inputs

Cloud cover directly affects the magnitude of DNI at the ground
level. Therefore, sky images that provide information of cloud cover
are useful to the solar forecasts [34]. For a 8-bit RGB sky images,
cloud pixels generally have a higher red (R) intensity values than
sky pixels. Therefore, the ratio (RBR ¼ R/B), difference
(RBD ¼ R � B), or normalized ratio (nRBR¼(R e B)/(R þ B)) of red
intensity to blue intensity are widely used to identify the presence
of clouds from images.

Comparing to the RBR and RBD, nRBR shows improved robust-
ness because it avoids extremely large RBRs when pixels have very
low blue intensities [26,35]. Examples of original and nRBR images
are shown in Fig. 1. Therefore, we use the nRBR parameter to
w) for clear period (left column), overcast period (mid column), and partly cloudy (right
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calculate three numerical cloud cover information for a sky image:
mean, standard deviation and entropy.

Mean

m ¼ 1
N

XN
i¼1

nRBRi; (2)

where N is the number of pixels. Standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðnRBRi � mÞ2
vuut : (3)

Entropy

e ¼ �
XNB

j¼1

pjlog2
�
pj
�
; (4)

where pj is the relative frequency for the jth bin (out of NB ¼ 256
bins evenly spaced). These three metrics are used as inputs to the
proposed forecasting models.

We directly use nRBR without employing cloud detection
(detect the actual cloud cover from an image) for two reasons: 1)
Cloud detection methods usually require significant amount of
processing time which may significantly increase the latency of the
real time forecasting. 2) Most of the cloud detection methods
available in literature [26,35e41] detect clouds using RBR or nRBR
information. Therefore, nRBR-based metrics already represent the
cloud cover information and can be directly used to forecast DNI
through statistical methods (such as ANNs in this work).

In addition to the three image-related inputs (Eqs. (2)e(4)), we
also consider the time-lagged DNI and DIF measurements
(ranging from 0 to 20 min in steps of 5 min) as inputs because: 1)
Latest measured DNI are highly informative for intra-hour fore-
casts of DNI [27] 2) Significant variations of DIF usually associate
with cloud enhancement. Cloud enhancement happens when
clouds are close to the solar disk and therefore is a indicator of
possible ramp events in future [42,43]. Consequently, we consider
DIF measurements as inputs to improve the forecast accuracy for
ramp events. To make the performance of forecasts comparable,
both Bootstrap-ANN model and Hybrid model use the same set of
inputs.
3.2. Artificial neural networks

ANNs are widely used for solar modeling and forecasting as
classification and regression tools [44e48]. In this work, we employ
multilayer preceptron neural network, which is one of the most
established ANN architectures which are capable of performing
arbitrary non-linearmappings [1,49]. Neurons (the basic processing
elements of ANN) are placed in layers. The layers between the first
input layer and the last output layer are hidden layers [50]. For
short term solar forecasts using cloud information as inputs, the
number of hidden layer is set to 1 and the number of neurons per
hidden layer is set to 7 as suggested in Ref. [26]. On a hidden layer,
each neuron sums the weighted outputs from the previous layer
and adds a bias to the sum. Then the sum is processed by an acti-
vation function (sigmoidal functions in this work) to generate
outputs, which are used as the inputs for neurons on the following
layer. The mathematics expression for the signal processing of
neurons is
Yi ¼ f

0
@XN

j¼1

�
wijXj þ bij

�1A; (5)

where Yi is the output of the i-th neuron on current layer, f(,) is the
activation function, wij and bij are the weight and bias of the j-th
input on the i-th neuron, and Xj is j-th output from previous layer.
The weight wij and bias bij are determined through a supervised
learning process using the training set. In this work, the learning
process is the Bayesian regularization process with Lev-
enbergeMarquardt optimization. Once the learning process is
finished, the ANN model is able to generate predictions using new
inputs.

3.3. Support vector machines

SVM is a useful tool for pattern recognition and data classifica-
tion [51e55] and has been employed in the field of renewable
modeling and forecasting [56e58]. In this work, we use the LIBSVM
toolbox provided by Ref. [55]. SVM first maps the input vector x to a
feature space where the input vector is associated with a class label
(target) y2{01} (0 for lv and 1 for hv). In this work, the SVM uses
the same input set as discussed in Section 3.1, and these inputs are
linearly scaled. Because the number of the input features is greater
than 10, the SVM applied in this work uses linear kernel function as
suggested in Ref. [55]. A hyperplane is used by SVM to separate
these two classes of vectors:

f ðxÞ ¼ w$xþ b; (6)

where w is a vector normal to the hyperplane and b is a bias term.
Optimal hyperplane is identified using a cost function that 1)
minimize the misclassification cases and 2) maximize the margin
between closest training samples (support vectors) and the
hyperplane:

Fðw; εÞ ¼ 1
2
kwk2 þ C

XN
i¼1

εi; (7)

where C determines the penalty assigned to ε. ε represents
misclassification cases. Minimization of Eq. (7) is subject to two
constraints:�
yiðw$xi þ bÞ � 1� εi; i ¼ 1;2;…;N

εi � 0; i ¼ 1;2;…N
: (8)

3.4. Persistence model

The persistence model is the simplest forecast model and is
selected as a reference model. The persistence forecast assumes
that the clear-sky index remains constant within the forecast ho-
rizon. Persistence over clear sky index removes the effect of the
diurnal solar variation and achieves high accuracy in periods of low
DNI variability. The mathematic expression of the persistence
forecast is

bBpðt þ FHÞ ¼ BðtÞ
BclrðtÞ

� Bclrðt þ FHÞ; (9)

where bBp is the persistent prediction, subscript p represents
persistence, t is the time point, FH is the forecast horizon, B is the
measured DNI values, and Bclr is the predicted clear sky DNI from a
clear sky model. In this work, we use a empirical clear-sky model



Table 1
Confusion matrix of classification of DNI variability level.

Classified Measured

lv hv

lv True positive (TP) False positive (FP)
hv False negative (FN) True negative (TN)
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[3,27]. This model computes clear-sky DNI using a seven-order
polynomial expression that depends on the sine of the solar
elevation angle. The parameters of this polynomial expression are
obtained using least square method for 30 clear-sky days selected
from the training set. This clear-sky model have advantages in
terms of accuracy, simplicity, and ease of implementation when
compared with most clear-sky models in literature works [27].

The uncertainty associated with the persistence forecast is
estimated using the most recent forecasting errors:

spðt þ FHÞ2 ¼ 1
M

XM
i¼0

�bBpðt � iDtÞ � Bðt � iDtÞ
�2

; (10)

where Dt is the forecast interval and M represents the number of
forecast instances in the considered lagged period, which is set to
1 h empirically. The errors of the forecast are assumed to be
Gaussian distributed [29,30]. Therefore, the persistence PIs with a
confidence level of (1�a) are generated using the critical value
z1�0.5a of standard normal distribution:

bBpðtÞ±z1�0:5aspðtÞ: (11)
Table 2
Classification accuracy of DNI variability level on the validation set.

5-min 10-min 15-min 20-min

Persistence overall 0.84 0.83 0.82 0.81
Persistence for lv 0.89 0.88 0.87 0.86
Persistence for hv 0.71 0.70 0.69 0.66
SVM overall 0.87 0.86 0.86 0.85
SVM for lv 0.87 0.86 0.86 0.85
SVM for hv 0.88 0.87 0.86 0.85
3.5. Bootstrap-ANN model

The Bootstrap method is simple, easy to implement, and
therefore is frequently used to generate PIs for ANN point forecasts
[29,30,59,60]. This method first randomly samples the training set
with replacement to obtain N bootstrap re-sampled sets (N is set to
200 as suggested in Ref. [29]). Then each of these N re-sampled sets
is used to train a bootstrap ANN, so N bootstrap ANNs are prepared.
With new inputs, predictions from all bootstrap ANNs are used to
generate an ensemble prediction:

bBf ðtÞ ¼ ð1=NÞ
XN
i¼1

bBiðtÞ; (12)

where subscript f represents true regression in Eq. (1). bBf is the
estimation of the true regression term, and the variance of the N
bootstrap predictions

s2f ðtÞ ¼ 1=N
XN
i¼1

�bBiðtÞ � bBf ðtÞ
�2

(13)

is used to estimate the uncertainty of the true regression. The
magnitude of the variance squared residuals (r) at time t can then
be calculated as:

r2ðtÞ ¼ max
��

BðtÞ � bBf ðtÞ
�2 � s2f ðtÞ;0

	
: (14)

Using the same training data, a new ANN is trained to model the
white noise se by maximizing the log-likelihood of observed re-
siduals r on the training set that contains M training instances:

se ¼ argmaxse

XM
i�1

log

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2eðtiÞ
q exp

�
� r2ðtiÞ
2s2eðtiÞ

	1CA; (15)

where the subscript e represent the white noise in Eq. (1). The final
Bootstrap-ANN forecast bBB and associated uncertainty sB is calcu-
lated using Bayesian estimation:
p
�bBBðtÞ




sBðtÞ� ¼
Z

p
�bBðtÞ


seðtÞ�p�bBf ðtÞ




sf ðtÞ�d�bBf ðtÞ
�
:

(16)

With the assumption that errors are Gaussian distributed [30],
the posterior prediction bBB ¼ bBf and the total variance
s2BðtÞ ¼ s2f ðtÞ þ s2eðtÞ. As a result, the PIs are generated using the
critical value z1�0.5a:

bBBðtÞ±z1�0:5asBðtÞ: (17)

The Bootstrap-ANN model consists of 201 ANNs: 200 for pre-
dicting bBf and 1 for predicting se. As a result, computational cost is
one of the main drawbacks for the Bootstrap-ANN model [60].
Therefore, we only employ and test this model as a reference model
on the validation set that is based on historical data. Bootstrap-ANN
model is not deployed for real-time forecasting.
3.6. The hybrid model

DNI time series and sky images can be categorized into two
distinct phases [26,27]: the low DNI variability period (lv), defined
as (B(t þ FH) � B(t))/Bclr(t) < 0.05; and the high DNI variability
period (hv), defined as (B(t þ FH) � B(t))/Bclr(t) � 0.05 lv is usually
associated with clear or overcast sky conditions and hv is usually
associated with partly cloudy sky conditions.

The training set can be labeled and divided into a lv subset and a
hv subset, and two ANN schemes (ANNlv and ANNhv) are trained
using the lv subset and the hv subset, respectively. To reduce the
computational cost and to simplify the Hybrid model for real time
forecasting, both ANNlv and ANNhv are trained to directly predict
the Hybrid forecast bBHðtÞ and associated total uncertainty sH(t)
without considering the uncertainty of the true regression (dis-
cussed in Section 3.5). Each of the two ANN schemes needs only 2
ANNs: 1 for predicting bBH and 1 for predicting sH. The ANN for
modeling sH(t) is trained using the same maximum likelihood
estimation method discussed in Eq. (15) by maximizing the log-
likelihood of Hybrid forecast residuals r2HðtiÞ ¼ ðbBHðtiÞ � BðtiÞÞ2.

For the proposed Hybrid model, a SVM is first trained using the
whole training set to perform the classification of the DNI vari-
ability level (0 for lv and 1 for hv).We define a reference persistence
classifier to benchmark the performance of the SVM classifier. This
persistence classifier assumes the DNI variability level remains the
same within the forecast horizon. The trained SVM and two ANN
schemes are used to create the Hybrid model, which is defined as:



Table 3
Deterministic point forecast results on the validation set in terms of statistical
metrics. Boldface font identifies the best performance. MBE, MAE, and RMSE are in
(Wm�2).

5-min 10-min 15-min 20-min

Persistence MBE 0.6 1.4 2.2 3
MAE 50.3 64.6 72.1 78.4
RMSE 128 152.6 164.3 172.5
s 0.0% 0.0% 0.0% 0.0%

Bootstrap-ANN MBE �4.5 �5.1 �4.6 �3.9
MAE 49.8 60.8 68.5 75.2
RMSE 111.8 128.9 140.6 150.0
s 12.7% 15.5% 14.4% 13.1%

Hybrid MBE �3.4 �6.5 �5.9 �5.4
MAE 47.5 61.5 67.3 72.8
RMSE 112.6 128.6 138.9 150.7
s 12.0% 15.7% 15.5% 12.6%

Table 5
Results of CWCs for overall, lv, and hv periods on validation set. Boldface font
identifies the best performance.

Models 5-min 10-min 15-min 20-min

Overall Persistence 6.565 18.892 40.966 86.632
Bootstrap-ANN 2.392 13.252 21.775 54.389
Hybrid 0.242 0.274 0.282 0.293

lv Persistence 0.470 0.524 2.542 10.558
Bootstrap-ANN 0.266 0.686 2.430 9.234
Hybrid 0.121 0.144 0.150 0.157

hv Persistence 393.515 660.922 955.924 1118.812
Bootstrap-ANN 350.488 584.006 407.535 398.438
Hybrid 0.554 8.733 5.532 4.626
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nbBðt þ FHÞ; sHðt þ FHÞ
o
¼

�
ANNlvðtÞ if SVMðtÞ ¼ 0ðlvÞ
ANNhvðtÞ if SVMðtÞ ¼ 1ðhvÞ

(18)

where the SVM determines which ANN scheme to apply: when the
SVM output is 0 (lv), it applies ANNlv, otherwise it applies ANNhv.
The selected ANN scheme predicts a Hybrid point forecast bBHðtÞ
and a Hybrid forecast variance sH(t), and the Hybrid PIs are
generated as:

bBHðtÞ± z1�0:5asHðtÞ: (19)

The Hybrid model consists of 4 ANNs and 1 SVM in total.
Therefore, the computational cost of the Hybrid model is sub-
stantially lower than the Bootstrap-ANN model and meets the
computation time requirement for real-time applications.
3.7. Assessment metrics

We assess the classifications of the DNI variability level (lv or hv)
from persistence classifier and SVM classifier using the confusion
matrix shown in Table 1.

The accuracy of classification is defined as the percentage of
time points that are classified correctly:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; (20)

We use four statistical metrics to assess the deterministic pre-
dictions of persistence model, Bootstrap-ANN model and Hybrid
model: mean biased error (MBE)
Table 4
Overall PICPs and PINAWs of persistence, Bootstrap-ANN, and Hybrid models for differe

Model PICP PINAW

1-a 5-min 10-min 15-min

Persistence 0.68 0.73 0.70 0.68
0.80 0.78 0.76 0.74
0.90 0.83 0.81 0.80
0.95 0.86 0.85 0.84

Bootstrap-ANN 0.68 0.69 0.66 0.64
0.80 0.77 0.74 0.73
0.90 0.85 0.82 0.81
0.95 0.90 0.87 0.86

Hybrid 0.68 0.83 0.79 0.79
0.80 0.89 0.87 0.86
0.90 0.93 0.92 0.91
0.95 0.94 0.94 0.93
MBE ¼ 1
n

Xn
t¼1

�bBðtÞ � BðtÞ
�
; (21)

mean absolute error (MAE)

MAE ¼ 1
n

Xn
t¼1

�


bBðtÞ � BðtÞ



�; (22)

root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

�bBðtÞ � BðtÞ
�2vuut ; (23)

and forecasting skill (s), which measures the improvement of the
proposed forecast model (the Bootstrap-ANN or the Hybrid) over
the persistence model in terms of RMSE

s ¼ 1� RMSE
RMSEp

: (24)

We also use three performance metrics [30,61] to quantitatively
assess the PIs:

Prediction interval coverage probability (PICP), which measures
whether the target values are covered by the PIs:

PICP ¼ 1
n

Xn
i¼1

ci; (25)

where ci ¼ 1 indicates measured DNI value is within the PIs,
otherwise ci ¼ 0.

Prediction interval normalized averaged width (PINAW), which
measures the informativeness of PIs:
nt confidence levels (1-a) on the validation set.

20-min 5-min 10-min 15-min 20-min

0.66 0.132 0.157 0.169 0.178
0.73 0.164 0.193 0.208 0.218
0.78 0.203 0.238 0.255 0.267
0.82 0.233 0.270 0.289 0.302
0.61 0.129 0.149 0.164 0.175
0.70 0.161 0.185 0.202 0.215
0.79 0.199 0.227 0.247 0.262
0.85 0.228 0.258 0.280 0.296
0.78 0.165 0.188 0.194 0.203
0.85 0.202 0.229 0.236 0.246
0.90 0.242 0.274 0.282 0.293
0.93 0.271 0.306 0.314 0.325
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PINAW ¼ 1
n

Xn
i¼1

Wi

Bclr
; (26)

whereWi is the width between the upper and lower bounds of PIs.
Coverage width-based criterion (CWC), which assesses the

quality of PIs combining PICP and PINAW:

CWC ¼ PINAW
�
1þ gðPICPÞehð1�a�PICPÞ

�
; (27)

where g depends on the value of PICP:

g ¼
�
0 PICP � 1� a
1 PICP<1� a

(28)

1�a is the nominal confidence level, h is a parameter that
controls the weight of PICP in determining the value of CWC.
Coverage probability (PICP) is the most important characteristic of
PIs, and invalid PIs should be highly penalized [30]. Therefore, h is
set to 50 as suggested in Ref. [30].
4. Results and discussion

4.1. Classification of DNI variability level

The classification performance of the persistence and SVM
classifiers on the validation set are listed in Table 2. The persistence
classifier slightly outperforms the SVM classifier during lv period.
However, the classification accuracy of persistence classifier is
substantially lower during hv periods because it is unable to fore-
cast the occurrence of ramps caused by cloud movements [26,27].

The SVM classifier achieves higher overall accuracy for forecast
horizons from 5 min to 20 min. The classification accuracy of SVM
classifier exceeds 85% for both lv and hv periods. Through analysis,
we find that the misclassifications of SVM classifier are usually
caused by two reasons: 1) Because of the image glare, Pixels in
circumsolar region of sky images have high magnitude of RBR that
are close or overlap cloudy RBR. 2) The clear sky model is less ac-
curate in modeling the DNI in low sun elevation period [27].
Therefore, the algorithm occasionally identifies the discrepancy
between measured and modeled clear-sky DNI as pseudo-ramps.
The above two reasons impair the quality of the inputs and tar-
gets to the classifier, adversely affect the training process of clas-
sifier, and degenerate the accuracy of SVM classifier.
Fig. 2. Forecast results of persistence, Bootstrap-ANN, and Hybrid models for various
forecast horizons and confidence levels in 2-D map. X-axis represents PICP, y-axis
represents PINAW. Each marker stands for one validation result.
4.2. Deterministic point forecasts

The persistence model, Bootstrap-ANN model, and the Hybrid
model are evaluated on the validation set and the results of point
forecasts are presented in Table 3 in terms of statistic metrics. All
three models show small bias. In terms of RMSE and s, both
Bootstrap-ANN and Hybrid models significantly outperform the
persistence model achieving 12%e16% improvements depending
on the forecast horizon. The forecast skills of the Hybrid model are
not significantly higher than the Bootstrap-ANN model mainly
because of the misclassifications of SVM. When SVM misclassifi-
cation occurs, the Hybrid model applies the inappropriate ANN
scheme resulting in a point prediction with relatively higher er-
rors, especially during the hv periods. Nevertheless, with the SVM
classifier that achieves an accuracy above 85% for hv period, the
PIs generated by the Hybrid model are superior to PIs generated
by the Bootstrap-ANN during hv period (will be discussed in
Section 4.3).
4.3. Validation of prediction intervals

Prediction intervals are generated from persistence, Bootstrap-
ANN and Hybrid models for four nominal confidence levels
(68.3%, 80%, 90%, and 95%) and are assessed on the validation set.
The validation results are presented in Tables 4 and 5. Ideally, PIs
should have high PICP and low PINAW indicating high coverage
probability of target values and high informativeness, respectively.
At the same confidence level, the PIs generated by the Hybrid
model mostly have higher PICPs and PINAWs than the PIs gener-
ated by the persistence and Bootstrap-ANN models (shown in
Table 4). The results of Table 4 are illustrated in a 2-D plot (Fig. 2)
where x-axis and y-axis represent PICP and PINAW, respectively. In
Fig. 2, at the same level of PINAW, the PIs of the Hybrid model have
significantly higher PICPs than the other two models. Therefore, in
Fig. 2, Hybrid markers achieve lower ratios of PINAW/PICP than
persistence and Bootstrap-ANN markers.

PIs are considered as valid if their PICPs are greater than their
nominal confidence level [30]. For instance, Hybrid PIs using 90%
nominal confidence interval achieve a PICP of 92.8% for 5-min
forecast on the validation set and therefore are considered as
valid PIs. As shown in Table 4, the Hybrid model is the only model
that achieves PICPs mostly greater than their nominal confidence
levels. PICPs of persistence and Bootstrap-ANN models are usually
lower than their nominal confidence levels.

Consequently, CWCs of the Hybridmodel are substantially lower
than the CWCs of the other two models for various forecast hori-
zons (shown in Table 5). In addition, the CWCs of both persistence
and Bootstrap-ANN models increase tremendously for hv period.
This increase in CWCs due to the decrease of PICPs during cloudy
weather is also observed in Ref. [30]. The Hybrid model, which
applies specific forecasting scheme for different DNI variability
levels, consistently achieves CWCs < 10 for both lv and hv periods.
4.4. Real time forecasting

We monitor and analyze the persistence and the Hybrid fore-
casts in real time during the period from August 1, 2014 to
November 23, 2014. The processing time to operate the forecasts
for each time point is less than 5 s. PIs are generated using a
nominal confidence level of 90%.



Table 6
Classification accuracy of DNI variability level in real time forecasting.

5-min 10-min 15-min 20-min

Persistence overall 0.89 0.87 0.86 0.85
Persistence for lv 0.92 0.91 0.91 0.91
Persistence for hv 0.78 0.68 0.64 0.60
SVM overall 0.91 0.87 0.87 0.86
SVM for lv 0.92 0.89 0.89 0.89
SVM for hv 0.86 0.85 0.83 0.82
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The classification accuracy of persistence and SVM classifiers are
presented in Table 6, and the statistical results for the deterministic
point forecasts are presented in Table 7. Hybrid point forecasts
significantly outperform the reference persistence model and
achieve forecast skills between 10% and 13% depends on forecast
horizons. Comparing to the validation set presented in the previous
section, the operational period for real-time forecasts has higher
fraction of clear (lv) time. Therefore, both persistence and Hybrid
model achieve lower MAE and RMSE in real-time than those on the
validation set (shown in Fig. 2 and Table 5).

The results for PIs are presented in Table 8. PIs are considered as
invalid if their PICPs are less than their nominal confidence level
([30]). In the real-time scenario, the Hybridmodel achieves positive
margins between PICPs and corresponding nominal confidence
levels for both hv and lv periods. Therefore, the PIs of the Hybrid
model are valid and reliable regardless of the variability level of
DNI. The Hybrid PIs are highly informative for lv periods and ach-
ieve low magnitudes of PINAWs. For hv period, the PINAWs of
Hybrid PIs are large because of the highly variable nature of DNI.

Comparing to persistence PIs whose PICPs decrease when
forecast horizon increases, Hybrid PIs of different forecast horizons
Table 8
Real time results of PICPs, PINAWs, and CWCs for overall, lv, and hv periods.

5-m

Overall PICP Persistence 0.9
Hybrid 0.9

PINAW Persistence 0.1
Hybrid 0.2

CWC Persistence 0.3
Hybrid 0.2

lv PICP Persistence 0.9
Hybrid 0.9

PINAW Persistence 0.0
Hybrid 0.1

CWC Persistence 0.0
Hybrid 0.1

hv PICP Persistence 0.7
Hybrid 0.9

PINAW Persistence 0.5
Hybrid 0.6

CWC Persistence 75.0
Hybrid 0.6

Table 7
Results for real-time point forecasts in terms of statistical metrics. MBE, MAE, and RMSE

5-min

Persistence MBE �0.4
MAE 37.5
RMSE 102.6
s 0.0%

Hybrid MBE 1.2
MAE 35.7
RMSE 93.1
s 10.0%
(5-, 10-, 15- and 20-min) achieves similar levels of PICP. The PINAW
of both forecasts for longer horizons are larger than their coun-
terparts for shorter horizons. As we observed in Table 3, Hybrid
deterministic point forecasts of longer horizons have larger errors
than that of shorter horizons. Therefore, the forecast models of
longer horizons are trained using larger forecast residuals (r2H) and
tend to predict larger uncertainty term (sH) and to generate PIs of
broader widths. The increase of uncertainties with respect to the
increase of forecast horizons is also observed in Ref. [30]. With a
relatively lower level of informativeness (overall <8% higher in
PINAW), the PIs of longer horizons achieve similar PICPs as the PIs
of shorter horizons.

Representative time series of 10-min horizon forecasts are
plotted in Fig. 3. During the lv periods (shown in Fig. 3a and b), the
PIs of both the persistence model and the Hybrid model achieve
excellent coverage probability with high levels of informativeness.
During the hv periods (shown in Fig. 3c and d), the Hybrid PIs
coversmost of the target values achieving significantly higher PICPs
than PIs from the persistence model. The PIs generated by the
persistence have low PICPs because their predictions of ramp
events are usually subsequent in time to the true ramp events.

Sample time-series of the Hybrid PIs and corresponding
measured DNI for all forecast horizons (5, 10, 15 and 20 min) are
shown in Fig. 4. Persistence PIs are presented for comparison.
When the forecast horizon increases, the lagging of persistence PIs
increases and the corresponding coverage probability gradually
decreases. The Hybrid PIs of different forecast horizons achieve
similar levels of coverage probability. However, the average widths
of Hybrid PIs for longer horizons are wider than their counterparts
for shorter horizons. As we observed in Table 7, Hybrid determin-
istic point forecasts of longer horizons are characterized by larger
RMSEs. Therefore, the forecasts for longer horizons tend to have
in 10-min 15-min 20-min

0 0.86 0.83 0.80
7 0.95 0.96 0.95
4 0.17 0.18 0.19
2 0.24 0.28 0.30
2 1.25 6.90 32.27
2 0.24 0.28 0.30
4 0.90 0.86 0.83
8 0.97 0.98 0.98
6 0.08 0.08 0.09
1 0.11 0.13 0.15
6 0.08 0.57 3.09
1 0.11 0.15 0.17
5 0.71 0.71 0.72
2 0.92 0.92 0.91
1 0.58 0.61 0.62
1 0.71 0.72 0.73
2 779.91 816.41 547.37
1 0.71 0.72 0.73

are in (Wm�2).

10-min 15-min 20-min

�1.2 �2.2 �3.4
45.8 53.4 58.6
124.3 139.0 149.1
0.0% 0.0% 0.0%
2.11 4.0 5.3
44.2 51.8 56.8
111.5 122.3 131.8
10.3% 12.2% 11.6%



Fig. 3. Sample time series of 10-min horizon forecasts from the persistence and the Hybrid models: (a) clear period (2014-10-19), (b) overcast period (2014-11-13), (c) partly cloudy
period 1 (2014-10-10), and (d) partly cloudy period 2 (2014-11-04).
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larger residual (r2H) and larger uncertainty term (sH) resulting in
wider PIs. The increase of uncertainty with respect to the increase
of forecast horizon is also observed in Ref. [30]. Wider PIs for longer
horizons achieve similar PICPs but higher PINAWs than the PIs for
shorter horizons.

The PIs of the Hybrid model achieve high coverage probability
during ramp events regardless of weather and forecast horizon.
Accurate forecast of irradiance ramps is essential to solar power
plants for inverter control, plant management and real-time
dispatch operations [62,63]. The Hybrid PIs provide possible
ranges for the DNI ramps, quantify the uncertainty in the point
predictions, and therefore provide useful information for plants or
grid operators to make informed decisions tomitigate the weather-
dependent variance of solar power production.
5. Conclusions

A Hybrid multilayered computational model is developed to
generate prediction intervals (PIs) for intra-hour forecast of DNI.



Fig. 4. Sample time series of different horizon forecasts from the persistence model (left column) and the Hybrid model (right column) for partly cloudy period 2 (2014-11-04): (a)
5-min, (b) 10-min, (c) 15-min, and (d) 20-min.
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The proposed Hybrid model integrates Support Vector Machine
(SVM) classifiers, Artificial Neural Network (ANN) algorithms, and
sky-imaging techniques. We train themultilayeredmodel using 12-
month of irradiance and sky-imaging data collected at our solar
meteorology station in Folsom, California. The forecasting model
first uses a SVM classifier to categorize the current time into either
low DNI variability period (lv) or high DNI variability period (hv).
Then based on the present DNI variability level, the Hybrid model
adaptively applies specific ANN schemes to generate PIs for 5-, 10-,
15-, and 20-min forecast horizons. Persistence and Bootstrap-ANN
models are employed as the reference models to benchmark the
performance of the proposed Hybridmodel. The PIs generated from
the threemodels are validated for six months of validation data and
quantitatively assessed in terms of three metrics: PI coverage
probability (PICP), PI normalized average width (PINAW), and
coverage width-based criterion (CWC). The Hybrid model is oper-
ational in real time at the same observatory in Folsom since July 1st,
2014.

The results for both the model validation phase and the
continuous operational forecasts show that:
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1. At similar level of PINAW, the Hybrid PIs substantially outper-
form the reference models in term of PICP and CWC regardless
of the forecast horizon and the level of DNI variability.

2. The Hybrid PIs successfully quantify the uncertainty of deter-
ministic point predictions, provide possible range for target
DNIs, and achieve coverage probabilities which are substantially
better than the nominal confidence levels.

3. The Hybrid PIs respond rapidly to the changes of DNI variability
level and achieve high coverage probability during ramp events.

The proposed Hybrid model thus provide highly relevant in-
formation to mitigate the effects of weather-dependent variability
on solar power generation.
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