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Abstract

We develop a standalone, real-time solar forecasting computational platform to predict one minute averaged solar irradiance ramps
ten minutes in advance. This platform integrates cloud tracking techniques using a low-cost fisheye network camera and artificial neural
network (ANN) algorithms, where the former is used to introduce exogenous inputs and the latter is used to predict solar irradiance
ramps. We train and validate the forecasting methodology with measured irradiance and sky imaging data collected for a six-month
period, and apply it operationally to forecast both global horizontal irradiance and direct normal irradiance at two separate locations
characterized by different micro-climates (coastal and continental) in California. The performance of the operational forecasts is assessed
in terms of common statistical metrics, and also in terms of three proposed ramp metrics, used to assess the quality of ramp predictions.
Results show that the forecasting platform proposed in this work outperforms the reference persistence model for both locations.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Solar energy offers the opportunity to produce low- to
zero-carbon power as solar generation technologies are
now both functionally ready and nearly financially compet-
itive to be deployed at large scales to the power grid. How-
ever, the variable nature of the solar resource remains an
obstacle to achieving higher levels of grid penetration
(Inman et al., 2013; Singh, 2013). At increasingly higher
solar penetration levels, sudden power drops (chiefly
caused by clouds) can adversely affect local power
amplitude and frequency stability, which directly affects
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0038-092X/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: ccoimbra@ucsd.edu (C.F.M. Coimbra).
the quality of the power generated, and greatly affects the
pricing of variable generation. One way to solve this issue,
although expensive, is by storing electrical energy during
sunny periods, which can be used during transient periods
to smooth out power output. A low cost alternative that
does not decrease the power output variability, as storage
does, but decreases the uncertainty in the power output is
solar forecasting.

With this goal in sight, different solar forecasting meth-
ods have been developed for various temporal horizons to
meet the increasing demands for solar integration
(Kalogirou, 2001; Li et al., 2008; Bacher et al., 2009;
Huang et al., 2010; Mellit and Pavan, 2010; Hassanzadeh
et al., 2010; Marquez and Coimbra, 2011; Pedro and
Coimbra, 2012; Lave et al., 2012; Hart et al., 2012;
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Nomenclature

ANN artificial neural network
CI cloud index
clr clear-sky condition
CSL clear-sky library
CVM cross validation method
DNI direct normal irradiance
FH forecast horizon
FRP false ramp prediction
FRI false ramp prediction index
FTM fixed threshold method
GA genetic algorithm
I irradiance
ISFP integrated solar forecasting platform
ke excess kurtosis
MBE mean bias error
MCE minimum cross entropy method
MLP multi-layer preceptron

MFR-7 multi-filter rotating shadowband radiometer
N number
NFV number of forecast time points
P occurrence rate
p persistence
PIV particle image velocimetry
RDI ramp detection index
RM* non-dimensional ramp magnitude
RMI ramp magnitude index
RMSE root mean square error
SACI smart adaptive cloud identification system
s forecast skill
TNR true no ramp prediction
t time point
r standard deviation
l4 fourth central moment
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Marquez and Coimbra, 2013; Marquez et al., 2013a;
Inman et al., 2013; Quesada-Ruiz et al., 2014; Chu et al.,
2015). Among these models, artificial neural network
(ANN) is one of the most widely used modeling and fore-
casting tools (Elizondo et al., 1994; Mellit and Kalogirou,
2008; Cao and Lin, 2008; Martı́n et al., 2010; Mellit and
Pavan, 2010; Mellit et al., 2010; Marquez and Coimbra,
2011; Pedro and Coimbra, 2012; Marquez et al., 2013a;
Marquez et al., 2013b; Chu et al., 2013). However, most
of the cited studies do not consider cloud information as
ANN inputs, while cloud information is one of the most
important factors that cause ground-level irradiance
ramps. Forecast models that consider cloud information
are developed based on either remote sensing or local sens-
ing. Remote sensing based models (Hammer et al., 1999;
Perez et al., 2010; Marquez et al., 2013b; Nonnenmacher
and Coimbra, 2014) that use satellite images have limited
spatial and temporal resolutions and therefore not appro-
priate for intra-hour forecast (Ghonima et al., 2012;
Marquez and Coimbra, 2013; Chu et al., 2013). To perform
the intra-hour hour forecast, local sensing based models
are developed using high resolution local sky images cap-
tured by high-frequency sky imagers (Chow et al., 2011;
Marquez et al., 2013a; Marquez and Coimbra, 2013;
Urquhart et al., 2013; Quesada-Ruiz et al., 2014). Typi-
cally, these sky imaging incorporated models do not
employ stochastic learning techniques to statistically
improve the robustness and accuracy of the forecasts.
Forecast models that integrate ANN and cloud tracking
methods have been developed in the recent years
(Marquez et al., 2013a; Marquez et al., 2013b; Chu et al.,
2013; Chu et al., 2014). For intra-hour horizons, these inte-
grated methods achieve forecast skills ranging from 5% to
20% when tested on historical data.
With increasing local and global demand for solar
energy generation and integration, the development of
solar forecasting tools to mitigate power grid instability is
now of critical importance, however, most of these forecast
models are not assessed in real-time, focus on either global
horizontal irradiance (GHI) or the direct normal irradiance
(DNI), use expensive scientific or commercial sky imagers,
and are evaluated only with statistical metrics that cannot
explicitly assess forecast performance in predicting irradi-
ance ramps.

In this work, we develop an operational Integrated Solar
Forecasting Platform (ISFP) that takes cloud information
as exogenous inputs to ANN and simultaneously forecasts
one minute averaged values of both GHI and DNI ten min-
utes in advance. We use a generic off-the-shelf, high-resolu-
tion fisheye dome network camera to capture sky images
for the ISFP. Compared to sky imagers used in other
works (e.g. YES TSI-440/880), the network cameras have
advantages such as substantially lower cost, higher spatial
resolution, portability, and ease of installation.

Accurate forecast of irradiance ramps is essential for
inverter control, plant management and real-time dispatch
operations for solar power plants (Zhang et al., 2013;
Florita et al., 2013). However, common statistics metrics,
such as root mean square error (RMSE), are unable to
quantitatively evaluate the performance of a forecast
model in estimating irradiance ramps. Zhang et al. (2013,
2015) evaluate a suite of metrics which are commonly used
to assess solar forecasts and suggest that skewness,
kurtosis, and Renyi entropy are qualitatively sensitive to
the performance of ramp forecasts. Florita et al. (2013)
propose a swinging door algorithm to extract solar ramps
by identifying the start and end points of ramps. However,
these available metrics do not explicitly quantify the
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performance of ramp forecasts. Therefore, to quantita-
tively assess the performance of ramp forecast considering
both ramp duration and ramp magnitude, we propose
three new metrics to assess the quality of ramp
forecasts: the ramp detection index (RDI), the false ramp
prediction index (FRI), and the ramp magnitude index
(RMI). The definition of these three metrics is presented
in Section 3.

The data used for the ISFP model development and
operational forecasts is presented in Section 2. Detailed
methods are presented in Section 3, including cloud detec-
tion, image processing to extract numerical cloud informa-
tion, the training and optimization of the ANNs, and the
metrics to assess the forecasting performance. Results
and discussion are presented in Section 4, and conclusions
are presented in Section 5.

2. Data

We collected irradiance data using 2 Multi-Filter Rotat-
ing Shadowband Radiometers (MFR-7) installed at
our observatories in Folsom (latitude = 38.64�, longi-
tude = �121.14�) and San Diego (latitude = 32.88�,
longitude = �117.24�), California. Manufactured by Yan-
kee Environmental Systems, Inc, the MFR-7 is able to
simultaneously measure the GHI and DNI components
of broadband solar irradiance every 30 s. Campbell
Scientific CR1000 data loggers are used to log one minute
average GHI and DNI values.

Sky images are obtained from 2 fisheye cameras
installed next to the MFR-7s. The fish-eye cameras use a
3.1MP CMOS sensor and a 360� panoramic view lens.
The cameras capture sky images and transfer them (via
FTP) to a remote server every minute. Irradiance data
and sky images are accessed in real-time and stored in a
MySQL database.

High quality data sets are essential to generate high
fidelity forecasts. The MFR-7s are first-class radiometers
that meet the accuracy requirements of this study. Irradi-
ance measurements are manually inspected and compared
with measurements from Licor LI-200 pyranometers which
are deployed close to the MFR-7s for data quality control.
We clean the camera domes regularly to maintain the qual-
ity of sky images, and discard sky images that show signif-
icant amount of dust on the camera dome.

In addition, we only consider data points collected dur-
ing periods for which the solar elevation angle is higher
than 20�. There are three reasons for discarding periods
of low solar elevation: (1) grid elements in the sky image
processing (Section 3.2) may be placed outside the pro-
jected image and unable to provide the necessary inputs
for solar forecasts; (2) ground obstacles such as trees and
buildings (see Fig. 1) occasionally obscure the sun and
decrease the accuracy of irradiance measurement and; (3)
higher scattering of direct beam generates image glare
(Chu et al., 2014), which adversely affects the accuracy of
cloud detection and solar forecasts.
Six months (January 13, 2013 to July 10, 2013) of
historical irradiance and sky-imaging data were collected
in Folsom for the training of the stochastic component of
the ISFP. The trained algorithm was used to generate oper-
ational real-time forecasts for both Folsom and San Diego
by ingesting live data streams of irradiance and sky images
into the model. The learning data include the possible
range of irradiance variability. After the supervised learn-
ing process (described in Section 3), the ISFP model was
deployed to forecast real-time GHI and DNI in Folsom
every 10 min as an unattended task. To study the generality
of the ISFP model, we duplicated and deployed as a robust
operational forecast of GHI and DNI for the San Diego
observatory.

The limited field of view of the sky camera prevents
using this methodology for forecast horizons longer than
20–30 min depending on the cloud speed. Therefore in this
work, the real-time forecast produces 10-min forecasts of
GHI and DNI. In a previous work (Chu et al. (2014)),
we have explored historical forecast with different forecast
horizons (e.g. 5- and 15-min) for a similar methodology.

In order to determine the performance of the opera-
tional forecasts, we monitored and analyzed its output
for the period of July 31, 2013 to February 2, 2014 in Fol-
som and from November 23, 2013 to February 11, 2014 in
San Diego. For both locations, periods of real-time fore-
casts include the possible range of irradiance variability
caused by diverse weather conditions. The statistical infor-
mation (variability, occurrence and magnitude of ramps,
etc.) for the irradiance time series is listed in Table 1. The
variability mentioned in Table 1 is the standard deviation
of the clear-sky index, which is defined as the ratio of mea-
sure irradiance to the clear-sky irradiance predicted by the
clear-sky model (discussed in Section 3.4). San Diego
region has a coastal micro-climate. The presence of marine
layer, usually in the morning and late afternoon, increases
the occurrence rate of solar ramps with different magni-
tudes. Therefore, the variability of irradiance in San Diego
is statistically higher than that in Folsom.

3. Methods

In this section, we present several tools used to develop
the ISFP and evaluate its performance. First, the cloud
identification method (Section 3.1). Second, the image pro-
cessing method to generate the cloud index (CI) time-series,
which are the inputs to the ISFP (Section 3.2). Third, the
ANN based ISFP and the genetic algorithm (GA) optimi-
zation of ISFP (Section 3.3). Forth, the performance
assessment metrics for ISFP (Section 3.4).

3.1. Smart adaptive cloud identification

We develop a smart adaptive cloud identification system
(SACI) (Chu et al., 2014) to conduct cloud detection for
images captured by the fish-eye cameras used in this exper-
iment. Firstly, each sky image is categorized as clear or
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Fig. 1. Examples of SACI cloud identification. Sky images for Folsom: (a) clear period (2013-08-05), (b) overcast period (2013-11-19), (c) partly cloudy
period with optically thick clouds (2013-10-06), and (d) partly cloudy period with optically thin clouds (2013-11-11). Sky images for San Diego: (e) clear
period (2013-12-30), (f) overcast period (2014-01-30), (g) partly cloudy period with optically thick clouds (2014-02-09), and (h) partly cloudy period
optically thin clouds (2013-12-01). The first and the fourth rows present the original images, the second and the fifth rows present the projected images, and
the third and sixth rows present the detected binary cloud maps with the grid elements.
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Table 1
Statistics of irradiance data collected during the analysis periods. Variability is the standard deviation of the 10-min changes of the clear-sky index; NFV is
the number of forecast time points; RM* is the non-dimensional ramp magnitude (introduced in Section 3.4). P(RM*) represents the occurrence rate of
ramp with specific non-dimensional magnitude.

Location Irradiance NFV Variability P(0:1 < RM� < 0:2) (%) P(0:2 < RM� < 0:3) (%) P(0:3 < RM� < 0:5) (%) P(RM� > 0:5) (%)

Folsom GHI 6581 0.1053 5.00 2.50 2.10 1.00
DNI 6581 0.1197 3.00 2.10 1.80 1.70

San Diego GHI 2483 0.1562 11.40 4.80 4.60 2.40
DNI 2483 0.1683 8.50 3.90 4.70 3.10
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cloudy using five criteria computed from past 10-min GHI
time-series. The five criteria are mean GHI, max GHI,
length of GHI time-series, variance of GHI changes, and
maximum deviation from clear-sky gradient (see Long
and Ackerman, 2000; Younes and Muneer, 2007; Reno
et al., 2012 for more details). Secondly, if the image is cat-
egorized as cloudy, the hybrid thresholding method (Li
et al., 2011) is used to analyze red blue ratio histograms
and further categorize the image as either overcast or partly
cloudy. Thirdly, after the image categorization, the SACI
employs Fixed threshold method (Li et al., 2011) for over-
cast images, clear sky library method with fixed threshold
(Ghonima et al., 2012) for clear images, and clear sky
library method with adaptive threshold (Otsu, 1979; Li
and Lee, 1993; Li and Tam, 1998) for partly cloudy images.
Examples of SACI cloud detection are shown in Fig. 1.

3.2. Grid cloud fraction method

Clouds that move to shade the sun will significantly
reduce DNI and therefore are more relevant to solar fore-
cast. Given that ISFP requires numerical inputs, we apply a
grid-cloud-fraction method to sky images (Marquez and
Coimbra, 2013) to obtain numerical information regarding
clouds that move towards the sun.

The grid-cloud-fraction method can be summarized in
five steps (see Marquez and Coimbra, 2013 and Chu
et al., 2013 for more details of this method):

1. Round sky images from fish-eye cameras are projected
onto a flat rectangular grid to remove the geometric dis-
tortion of the images (see Fig. 1, second and forth row).

2. Pairs of consecutive images are processed using Particle
Image Velocimetry (PIV) to compute the moving direc-
tion of the clouds (Mori and Chang, 2003). The PIV
method provides average cloud velocity in the sky. How-
ever, PIV is unable to identify multiple layer clouds that
move with different velocity.

3. SACI is used to identify clouds from sky images to pro-
duce binary cloud maps. Our current algorithm provides
only binary cloud maps and therefore is unable to deter-
mine the transmittance of clouds.

4. A set of grid elements is placed in the reverse direction of
the cloud movement from the sun position on the binary
cloud map (see Fig. 1, third and sixth row). In this work,
the dimensions of the grid elements is empirically set to
120 (length) � 200 (width) pixels.
5. Cloud indices CIi are computed as the fraction of pixels
identified as cloud in grid element i. The resulting CIi

time-series can then be used as input to the ANN-based
ISFP.

3.3. Artificial neural network and genetic algorithm

Artificial neural network (ANN) is a classification and
regression tool widely used in solar modeling and forecast-
ing (Bishop, 1994; Mellit and Kalogirou, 2008; Marquez
and Coimbra, 2011; Inman et al., 2013; Chu et al., 2013).
In this work, we employ multilayer preceptron neural net-
works (MLP). Signal processing elements (neurons) are the
processing units of the neural network. Neurons are placed
in layers, and the layers between the input layer and the
output layer are called hidden layers (Inman et al., 2013).
On each hidden layer, the i-th neuron sum the weighted
outputs X j of the previous layer and add a bias or thresh-
old bij to the sum. Then the sums are processed by the acti-

vation function of neurons f ð�Þ (this work uses sigmoidal
functions) to generate outputs Y i, which work as the inputs
for neurons on the following layer:

Y i ¼ f
XN

j¼1

ðwijX j þ bijÞ
 !

; ð1Þ

where N is the total number of outputs received from pre-
vious layer, X j is j-th output from previous layer, Y i is the
output of the i-th neuron on current layer, wij and bij are

the weight and bias of the j-th input on the i-th neuron,
and f ð�Þ is the activation function. The MLP parameters
(the weight wij and bias bij) are determined from learning

data in a supervised training process. In this work, the
training process is the Bayesian regularization process with
Levenberg–Marquardt optimization (Bishop, 1994; Inman
et al., 2013) using clear-sky indexes 10 min afterward as the
training targets. To implement this method for other fore-
cast horizon (e.g. 5-, or 15-min), the MLP needs to be re-
trained with updated targets. Once the training process is
converged and validated, the MLP model is able to make
prediction with new inputs.

The popularly used cross validation method (CVM) is
employed to prevent over-fitting of the MLP (Kohavi,
1995; Jain et al., 2000; Geisser, 1993; Lendasse et al.,
2003; Efron and Gong, 1983; Chu et al., 2013). Implemen-
tation of CVM includes the following three steps:



96 Y. Chu et al. / Solar Energy 114 (2015) 91–104
1. The training data is divided into N subsets. We set
N = 10 as suggested in literature (Kohavi, 1995;
McLachlan et al., 2004).

2. We train the MLP with randomly selected N-1 subsets
and use the remaining one subset to assess the perfor-
mance of the trained MLP model. We use root mean
square error (RMSE) of MLP model predictions and
targets as a criterion of MLP model performance.

3. Repeat the above two steps N times such that each sub-
set is used as the validation set. We use the average of N
RMSE as the performance criterion of MLP model. An
over-fitted model is prone to have high average RMSE
and optimized model should have the least average
RMSE.

We employ the GA to identify the optimal MLP scheme
(number of layers, number of neutrons on each layers,
potential inputs) that achieves the smallest validation
RMSE. GA is a tool to find the optimal solution from mas-
sive potential solutions (Holland, 1992; Mellit and
Kalogirou, 2008; Pai and Hong, 2005; Marquez and
Coimbra, 2011; Pedro and Coimbra, 2012; Chu et al.,
2013). The GA optimization is initialized with randomly
generated individuals. The GA objective function assesses
each individual and returns a fitness value. Then the
individuals with best fitness are selected as parents and
generate the new generation through cross-over and
mutation. The iterative process ends when the average fit-
ness of the individuals converges. The average RMSE from
CVM method is used as the GA objective function in this
work.

In total, 12 variables are chosen as GA inputs. The first
10 values are binary numbers used to determine whether a
possible input should be selected as inputs to the MLP. The
first five of these inputs are the clear-sky indexes of mea-
sured irradiance values at the current time, 5 min ago,
10 min ago, 15 min ago and 20 min ago. We use clear-sky
indexes as both inputs and targets to exclude the effect of
the diurnal solar variation from the process of training
and forecasting. The 6th input is the total sky cloudiness.
The last four inputs are cloud indices CI1; � � � ;CI4, calcu-
lated by the grid fraction method (Section 3.2). The goal
of GA is to identify which set of inputs are more useful
to the forecasts. GA selected inputs (both lagged irradiance
and CIs) are ingested by the MLP with fixed order. The
11th variable in the GA search-space is an integer that
specifies the number of hidden layers for the MLP, and
the 12th GA variable, also an integer, is the number of neu-
rons per hidden layer in the MLP.

The GA optimization are run as parallel jobs using 10
cores (2.39 GHz processor, 24 GB RAM). Once we have
the optimized MLP scheme via GA (indicated by the con-
vergence of average GA fitness in about 50 generations), we
train the GA-optimized MLP as stated at the beginning of
this section and apply the trained MLP to real-time
forecast. The optimization and training work takes about
24 h to complete.
3.4. Testing process

The persistence model is selected as a reference model to
evaluate the performance of ISFP. The persistence model is
the simplest forecast model and achieves high accuracy in
low variability periods. For this model we assume that
the clear-sky index remains constant within the forecasting
interval ½t; t þ FH �:

bI pðt þ FHÞ ¼ IðtÞ
IclrðtÞ

� Iclrðt þ FHÞ ð2Þ

where bI pð�Þ is the prediction of persistence model, FH is the
forecast horizon, Ið�Þ is the measured GHI or DNI values,
and Iclrð�Þ is the predicted GHI or DNI from a clear-sky
model. Assuming the persistence of the clear-sky index is
better than assuming persistence of irradiance because it
removes the effect of the diurnal solar variation. In this
work, we use the clear-sky model proposed by Ineichen
and Perez (2002). The extraterrestrial irradiance value I0,
current time, longitude, latitude and average Linke Turbid-
ity are the inputs for this clear-sky model. The detailed
method to calculate Linke Turbidity is discussed in
Ineichen and Perez (2002). The employed clear-sky model
is less accurate in morning and afternoon, particularly for
direct normal irradiance (Chu et al., 2013; Quesada-Ruiz
et al., 2014). The error of the clear-sky model is visible in
Figs. 3a and 4a.

We employ four popularly used statistical metrics to
assess the performance of the ISFP. The first one is the
mean biased error (MBE):

MBE ¼ 1

m

Xm

t¼1

ðbI ðtÞ � IðtÞÞ: ð3Þ

The second one is the root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

t¼1
ðbI ðtÞ � IðtÞÞ2

r
: ð4Þ

The third one is the forecasting skill (s), which measures the
improvement of the proposed forecast method (ISFP) over
the reference persistence model:

s ¼ 1� RMSE

RMSEp
: ð5Þ

The forth one is the excess kurtosis, which quantifies the
‘peakness’ of a distribution and the ‘heaviness’ of its tail
Kenny (1961), Joanes and Gill (1998), Chu et al. (2013),

ke ¼
l4

r4
� 3; ð6Þ

where l4 is the fourth central moment of the forecast
errors, and r is the standard deviation of the forecast
errors.

Given that one of the main goals in this work is to assess
the forecasting performance when ramps in the irradiance
are present, we define a set of three metrics for this pur-
pose. In the first place, we need to establish the definition
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of a ramp and the criteria to identify a ramp. There are two
common definitions of ramps: (1) the irradiance difference
between the start and end points of a time interval, and (2)
the difference between minimum and maximum irradiance
within a time interval (Zheng and Kusiak, 2009; Kamath,
2010; Florita et al., 2013; Nonnenmacher et al., 2014). In
this case, the two definitions are equivalent since in the
interval ½t; t þ FH � there are only two available data points:
the measured valued at time t and the measured at time
t þ FH for the measured ramps, and the measured valued
at time t and the forecasted value at time t þ FH for the
forecasted ramps. Ramps are identified when the absolute
difference of irradiance between the start and end points
of a time interval is higher than a threshold. The time inter-
val is set equal to the 10 min forecast horizon.

Low-amplitude fluctuations in the measured irradiance
time series may be caused by measurement errors, diurnal
solar circle, and other unexpected factors, even during clear
periods. Therefore, to analyze the significant ramps in irra-
diance that impair the stability of solar production, we
empirically use a threshold equal to 10% of the current
clear-sky irradiance Iclr to identify ‘true’ ramps. We use
Iclr to determine the value of threshold for two reasons:
(1) during periods of low solar elevation (6 30�), the aver-
age irradiance and corresponding ramp magnitude are rel-
atively lower than their counterparts for periods of high
solar elevation. Therefore, an Iclr based threshold is less
likely to miss ramps compared to a fixed threshold during
the low sun elevation period; (2) Iclr will not vary drasti-
cally during cloudy periods compared to a threshold based
on measured irradiance.
Fig. 2. The six possible outputs for ram
The ramp analysis is always applied after the operation
of ISFP. Therefore, the magnitude of the threshold has no
effect on the predictions of ISFP. However, if a large
threshold is used, solar ramps with relatively small magni-
tude may not be identified. On the other hand, if a small
threshold is used, measurement errors may be erroneously
classified as ramps. Therefore, when applied elsewhere, the
magnitude of the ramp threshold may be adjusted depend-
ing on the uncertainty of measurements and maximum tol-
erance of ramp magnitude for the specific application.

The assessment of the ramp prediction is based in three
values: the measured irradiance values IðtÞ; Iðt þ FHÞ, and

the prediction bI ðt þ FHÞ made at t for time t þ FH . We
define the value of a ramp as the difference between the
two measured irradiance (Iðt þ FHÞ � IðtÞ), and define the
ramp prediction as the difference between the predicted

irradiance and the measured irradiance (bI ðt þ FHÞ � IðtÞ).
An ‘up ramp’ has value greater than 10% Iclr and a ‘down
ramp’ has value smaller than �10% Iclr. Otherwise, we
define there is no ramp. Six possible outputs of the ramp
forecasts are presented in Fig. 2. The ramp magnitude
(RM, W/m2) is defined as the absolute of ramp value
(jIðt þ FHÞ � IðtÞj). For simplicity of following analysis,
we define a non-dimensional ramp magnitude as RM* =
RM/Iclr.

We propose three metrics to assess the quality of the
ramp forecasts. The first one is ramp detection index
(RDI). When a ramp occurs (the ramp magnitude exceeds
the 10% Iclr threshold), the ramp prediction is denoted as a
‘hit’ if (1) the magnitude of the ramp prediction exceeds the
ramp threshold (RM� > 0:1) and (2) ramp prediction and
p forecast when Iclr ¼ 1000 W=m2.



Table 3
Statistical metrics for real-time GHI and DNI forecasts in Folsom and
San Diego for 10 min horizon.
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the value of ramp have the same sign IðtþFHÞ�IðtÞbI ðtþFHÞ�IðtÞ
> 0. Exam-

ples of ‘hits’ are illustrated in Fig. 2(a and d). Otherwise,
the ramp prediction is denoted as a ‘miss’ as in Fig. 2(b
and e). The RDI is defined as the occurrence rate of ramp
‘hits’:

RDI ¼ Nhit

Nhit þ Nmiss
: ð7Þ

The second one is false ramp index (FRI). False ramps
occur if, for time intervals where no ramp was observed,

the predicted bI ðt þ FHÞ is beyond the range of
IðtÞ � 10% Iclr (see Fig. 2c). Otherwise, it is a true no ramp
prediction (TNR). Such events are usually observed during
clear or overcast periods (see Fig. 2f). Once these values are
quantified the FRI is defined as the occurrence rate of the
false ramp predictions:

FRI ¼ NFRP

N FRP þ N TNR
: ð8Þ

The last metric proposed is the ramp magnitude forecast
index (RMI). Using RDI and FRI, we could quantitatively
assess the forecast accuracy in predicting the occurrence of
ramps. However, these two metrics do not quantify the per-
formance of forecast platform in predicting the magnitude
of ramps. RMI is defined as the skill of the forecast in pre-
dicting the magnitude of ramps:

RMI ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNr
i¼1ðIðti þ FHÞ � bI ðti þ FHÞÞ2PN r

i¼1ðIðti þ FHÞ � IðtiÞÞ2

vuut ð9Þ

where N r is the number of ramp events, Ið�Þ is the measured

value and bI ð�Þ is the predicted value. Higher RMI values
indicates a more accurate prediction of ramp magnitude,
with RMI = 1 representing a perfect prediction of ramp
magnitude.

4. Results and discussion

4.1. GA optimization

The results of GA optimization are presented in Table 2,
which includes the optimal set of input variables, number
of hidden layers, and the number of neurons per layer.
Table 2 shows that the total sky cloud coverage and the
cloud indices are selected as inputs to both DNI and
GHI forecasts. Therefore, cloud cover information is useful
Table 2
GA optimized variables for the GHI and DNI forecasts. Indices represent
selected MLP inputs: 1–5 represent the time-lagged irradiance values, 6
represents the total sky cloudiness, and 7–10 represent the cloud indices
CIi. L represents the number of hidden layers, and N represents the
number of neurons per hidden layer.

Irradiance Indices of inputs L N

GHI 1 2 3 5 6 7 8 9 10 1 8
DNI 1 2 3 4 6 7 8 9 10 1 10
for short-term solar forecasts. These optimization results
match our earlier studies based on historical data in Chu
et al. (2013) and Chu et al. (2014), which suggest that cloud
information increases the forecast skills of MLP-based
models by 3–8% depending on forecast horizon and
weather conditions.

4.2. Error metrics

Results for the operational forecasts in real-time are pre-
sented in Table 3. Both persistence and ISFP models show
small MBE (less than 5 w/m2). In terms of RMSE and fore-
casting skill s, ISFP outperforms the persistence model.
The higher forecasting skill is attributed to the
combination of cloud tracking and stochastic learning.
Improvements over the persistence model are in the range
of 6.0–11.3% depending on location and irradiance compo-
nent. The ISFP results show smaller excess kurtosis ke than
persistence model and the results are in agreement with the
discussions in Chu et al. (2013): high kurtosis distributions
have sharper peaks and longer, heavier tails. The MLP-
based ISFP produces fewer instances of large errors and
more instances of moderate errors than persistence model,
resulting in an error distribution with shorter tail and
rounder shoulders,resulting in a smaller kurtosis.

Example time-series of forecast and corresponding error
are shown in Figs. 3 and 4 for Folsom and San Diego,
respectively. Because the ISFP operates to provide one pre-
diction every 10 min, each ISFP prediction is used to repre-
sent the expected level of irradiance for a 10-min interval in
these two figures. Each row of these two figures represents
one of the typical weather conditions: clear, overcast,
partly cloudy with optically thin clouds, and partly cloudy
with optically thick clouds. Representative sky images cor-
responding to Fig. 3a–d are shown in Fig. 1(a–d). Repre-
sentative sky images corresponding to Fig. 4 are shown
in Fig. 1(e–h).

During low irradiance variability periods (clear and
overcast), both persistence and ISFP models achieve excel-
lent performance with relatively low errors. During cloudy
periods, ISFP achieves positive forecast skills over the per-
sistence forecasts in both locations. The possible error
sources of ISFP include but are not limited to: (1) the cloud
Location Irradiance Forecast
method

MBE
(W/m2)

RMSE
(W/m2)

s (%) ke

Folsom GHI Persistence 0.7 63.6 0.0 27.6
ISFP 3.4 57.2 10.1 23.2

DNI Persistence 0.9 102.1 0.0 25.8
ISFP 1.8 90.5 11.3 18.9

San Diego GHI Persistence �0.3 86.1 0.0 9.4
ISFP 2.9 80.8 6.2 7.8

DNI Persistence �1.2 151.2 0.0 10.4
ISFP 4.7 142.1 6.0 8.6
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(b)

(c)

(d)

Fig. 3. Sample time series of the 10-min forecast of 1-min averaged irradiance and absolute errors in Folsom: (a) clear period (2013-08-05), (b) overcast
period (2013-11-19), (c) partly cloudy period with optically thick clouds (2013-10-06), and (d) partly cloudy period optically thin clouds (2013-11-11). The
1-min averaged data extends over the 10-min interval for ease of visualization.
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Fig. 4. Sample time series of the 10-min forecast of 1 min averaged irradiance and absolute errors in San Diego: (a) clear period (2013-12-30), (b) overcast
period (2014-01-30), (c) partly cloudy period with optically thick clouds (2014-02-09), and (d) partly cloudy period optically thin clouds (2013-12-01). The
1-min averaged data extends over the 10-min interval for ease of visualization.
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Fig. 5. RDI with respect to non-dimensional ramp magnitude for the
ISFP. Round markers and square markers represent forecasts in Folsom
and San Diego, respectively. RDIs are calculated for ramps within the
preset non-dimensional ramp magnitude ranges (shown in Table 4).
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Table 4
Results for ramp forecasts. RDI and RMI are calculated for ramps with different ranges of non-dimensional ramp magnitudes during the analysis periods.

Location Irradiance Criteria 0:1 < RM� < 0:2 (%) 0:2 < RM� < 0:3 (%) 0:3 < RM� < 0:5 (%) RM� > 0:5 (%)

Folsom GHI RDI 23.50 43.40 55.00 67.30
RMI �25.00 12.70 24.50 30.00

DNI RDI 28.70 43.00 45.30 72.90
RMI �18.00 8.20 20.00 28.10

San Diego GHI RDI 26.60 35.60 52.40 65.90
RMI �21.00 �0.10 28.10 28.50

DNI RDI 19.40 42.40 45.00 69.80
RMI �30.00 5.80 15.90 25.10
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identification algorithm does not have the ability to detect
the transmittance of clouds, the irradiance attenuation
caused by different cloud genre are considered to be the
same by ISFP. (2) Image pixels representing thin clouds
usually have lower RBRs. Therefore, they are likely to be
misidentified as clear pixels due to the subtraction process
of CSL method, especially in the circumsolar region(e.g.
Fig. 1d and h). (3) The reflection from surrounding obsta-
cles may decrease the accuracy of irradiance measurements.
(4) The errors of the clear-sky model adversely affect the
quality of MLP inputs and degenerate the forecast perfor-
mance, particularly for DNI forecast.

During the analysis periods, Folsom has experienced
more ‘clear time’ than San Diego which leads to lower
average irradiance variances (shown in the Table 1). There-
fore, the forecasts for Folsom has smaller RMSEs, sharper
peaks in error distributions, and higher kurtosis than the
forecasts for San Diego. In addition, ISFP achieves signif-
icantly higher forecast skills in Folsom than in San Diego
for both GHI and DNI because that the ISFP is trained
with irradiance and sky image data collected in Folsom.
This result shows that the ISFP performance depends on
local microclimate and should be trained with irradiance
and sky image data that collected locally to achieve maxi-
mum forecast skills.
R
M

I 

RM*
0.1 0.2 0.3 0.5

−50

0

Fig. 6. RMI with respect to non-dimensional ramp magnitude for the
ISFP. Round markers and square markers represent forecasts in Folsom
and San Diego, respectively. RMIs are calculated for ramps within the
preset non-dimensional ramp magnitude ranges (shown in Table 4).
4.3. Ramp prediction

We use ramp detection index (RDI), false ramp predic-
tion (FRI) and ramp magnitude index (RMI) to assess the
ISFP performance in forecasting ramps. The results are
presented in Table 4 and illustrated in Figs. 5 and 6. The
persistence forecast is unable to predict ramps, and its fore-
cast errors equal to the magnitude of ramps (RDI and
RMI always equal to 0). Therefore, we do not list the
results of persistence forecasts in Table 4. Table 4 shows
that for high-magnitude ramps (RM� > 0:5), the ISFP
achieves RDI >65% and RMI >25%. For moderate-magni-
tude ramps (0:2 < RM� < 0:5), RDI ranges from 40% to
60% and RMI ranges from 0% to 30%. For low magnitude
ramps 0:1 < RM� <0.2), the ISFP achieves relative low
RDI (ranges from 20% to 35%) and negative RMIs. Figs. 5
and 6 show that both RDI and RMI increase with the
non-dimensional ramp magnitude at both locations. ISFP
is more accurate in forecasting ramps with high magnitude.
The occurrence rate of the false DNI ramp predictions
(FRI) are 2.6% and 4.2% for Folsom and San Diego,
respectively. The GHI FRI are 2.3% and 4.3% for Folsom
and San Diego, respectively. Most of the false ramp predic-
tions come from partly cloudy periods (shown in Figs. 3
and 4). As discussed above, during the analysis period Fol-
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Fig. 7. Plot of the high magnitude ramps (RM� > 0:5) and corresponding ISFP predictions for (a) Folsom DNI, (b) Folsom GHI, (c) San Diego DNI, and
(d) San Diego GHI. The y-axis represents the non-dimensional ramp magnitudes. The ramps are shown as bars sorted in ascended order. Negative bars
indicate down ramps and positive bars indicate up ramps. The dash lines represent the ramp thresholds. The green circle and red square markers at the top
of the figure represent ‘hit’ and ‘miss’, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 8. Plot of the randomly selected low and moderate magnitude ramps (0:1 < RM� < 0:5) and corresponding ISFP predictions for (a) Folsom DNI, (b)
Folsom GHI, (c) San Diego DNI, and (d) San Diego GHI. The y-axis represents the non-dimensional ramp magnitudes. The ramps are shown as bars
sorting in ascended order. Negative bars indicate down ramps and positive bars indicate up ramps. The dash lines represent the ramp thresholds. The green
circle and red square markers at the top of the figure represent ‘hit’ and ‘miss’, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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som experiences higher fraction of clear time than San
Diego. As a result, the forecast FRIs in Folsom is signifi-
cantly lower than the FRIs in San Diego.
To further understand the ISFP performance in ramp
forecast, we plot the high-magnitude ramps (RM� > 0:5)
and corresponding ISFP predictions in Fig. 7. Fig. 7 shows
that the ISFP has accuracy >65% in predicting the
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occurrence of high magnitude ramps. However, the ISFP
tends to underestimate the magnitude of these ramps.
The underestimated ramp magnitudes are sometimes below
the ramp threshold (RM� < 10%) resulting in incorrect ‘no
ramps’ predictions. For high-magnitude ramps, most of the
‘miss’ cases come from these incorrect ‘no ramp’ predic-
tions. Fig. 7 also shows that DNI has more high-magnitude
ramps than GHI in both Folsom and San Diego during the
analysis periods. This phenomenon is expected because
DNI is statistically more variant than GHI.

Due to large amount of low and moderate magnitude
ramps, we randomly select 20% of ramps observed in Fol-
som and 33% ramps observed in San Diego with RM*

ranging from 0.1 to 0.5 and plot them in Fig. 8. Three typ-
ical errors are observed in forecasting low to moderate
magnitude ramps: (1) overestimation of ramp magnitude,
(2) incorrect sign of ramp value, and (3) incorrect ‘no ramp’
predictions, especially for low magnitude ramps (Fig. 8).
Both RDI and RMI decreases with the decrease of ramp
magnitude. These errors are caused by two reasons: (1)
the cloud classification algorithm returns binary cloud
maps that unable to model the attenuation factor of clouds.
Low magnitude ramps usually caused by the thin clouds
with various optical path is a challenging situation for fore-
cast. Therefore, the prediction of ramp magnitude may not
accurately match the ramp events (e.g. Figs. 3d and 4d). (2)
The SACI can differentiate clouds from image glare, but
not very accurately in the circumsolar region (e.g.
Fig. 1c, d, and h). The misidentification of cloud pixels
adversely affect the accuracy of ISFP forecast, results in
‘false ramp’ predictions (e.g. Fig. 3d).

5. Conclusions

We proposed an MLP-enhanced, image-based, Inte-
grated Solar Forecasting Platform (ISFP) and applied the
operational forecasting platform to real-time forecasting
at two locations with widely different solar microclimates.
The ISFP uses the SACI method to produce binary cloud
maps from sky images and then uses a grid-cloud-fraction
method to extract numerical cloud indexes (CIs) from the
cloud maps. Sky images are collected by fisheye dome net-
work cameras. Thereafter, we train the ISFP with lagged
measured irradiance and CIs collected from Folsom during
a period of six months, and deployed the trained ISFP in
real-time to perform 10 min horizon forecast at our obser-
vatories in Folsom and San Diego, California. Our opera-
tional method achieves the following forecasting skills over
the reference persistence model: 10.1% for Folsom GHI,
11.3% for Folsom DNI, 6.2% for San Diego GHI, and
6.0% for San Diego DNI.

To assess the ability of the ISFP to predict ramps, we
proposed three distinct metrics: (1) RDI, the percentage
of ramp occurrence that is successfully predicted; (2) FRI,
the percentage of false ramp predictions during no-ramp
periods, and (3) RMI, the accuracy of predicting the magni-
tude of ramps. Both the RDI and the RMI for the ISFP are
positively correlated to the non-dimensional magnitudes of
ramps. For high magnitude ramps (RM� > 0:5), the ISFP
achieves RDIs >65% and RMIs >25%. FRIs of the ISFP
are lower than 5% for both locations.

Suggestions for Future work include but not limited to:
(1) Improve the ISFP algorithm and enable the ISFP to
work more efficiently with higher temporal resolution for
multiple horizons. (2) Further improve the accuracy of
the cloud detection system. (3) Quantify the forecast uncer-
tainty of ISFP and provide prediction intervals.
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