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a b s t r a c t

A Sun-tracking imaging system is implemented for minimizing circumsolar image distortion for
improved short-term solar irradiance forecasts. This sky-imaging system consists of a fisheye digital
camera mounted on an automatic solar tracker that follows the diurnal pattern of the Sun. The Sun is
located at the geometric center of the sky images where the fisheye distortion is minimized. Images from
this new system provide more information about the circumsolar sky cover, which provides critical
information for intra-hour solar forecasts, particularly for direct normal irradiance. An automatic
masking algorithm has been developed to separate the sky area from ground obstacles and the image
edges for each image that is collected. Then numerical image features are extracted from the segmented
sky area and are used as exogenous inputs to MultiLayer Perceptron (MLP) models for direct normal
irradiance forecasts. Sixty-seven days of irradiance and image measurements are used to train, optimize,
and assess the MLP-based forecast models for solar irradiance. The results show that the MLP forecasts
based on the newly proposed sky-imaging system significantly outperform the reference models in
terms of statistical metrics and forecast skill, particularly for shorter horizons, achieving forecast skills
18%e50% higher than the skills of a reference MLP-based model that is based on a zenith-pointed, sta-
tionary sky-imaging system.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The market penetration of solar power generation is growing
rapidly and this growth imposes challenges to the operations of
electric power grids [1,2], which need to be balanced in real time
[3]. Ground-level solar irradiance is highly variable due to atmo-
spheric process, especially cloud cover and aerosol content. The
variability of irradiance at ground level affects the reliability of solar
power generation [4], which in turn compromises the stability and
integration costs for high solar penetration grids [5]. Accurate solar
irradiance and power forecasts are enabling technologies that have
the potential to mitigate the uncertainty of solar power generation
and to optimize demand and storage solutions [1,6e10].

Effective solar forecasting methods have been developed for
various temporal horizons, ranging from several minutes to a few
days. Commonly employed methods include regressive or sto-
chastic learning models [4,11e21] and physical models based on
remote-sensing or local-sensing techniques [7,19,20,22e27]. For
ra).
intra-hour forecasts, advanced hybrid models that integrate sto-
chastic learning and local sensing techniques have been developed
in the recent years [3,19,20,28]. When assessed in real time, the
hybrid models achieve forecast skills ranging from 6% to 32% over
reference persistence models [1,28,29].

To date, local-sensing systems are mostly based on sky imagers
or fisheye cameras [27]. The lenses of these imagers are stationary
and typically zenith-oriented. In this work, a sky-imaging system
consisting of a low-cost fisheye camera mounted on an automatic
solar tracker is used. The lens of this proposed system tracks the
trajectory of the Sun and provides sky images centered at the
apparent position of the Sun in the sky. In comparison to whole sky
images from stationary imagers, Sun-centered sky images provide
more information about the circumsolar sky-cover with substan-
tially less distortion. Therefore, this new sky-imaging system has
high potential to further enhance the performance of intra-hour
Direct Normal Irradiance (DNI) forecasts.

In general, sky images capture not only the sky area but also the
ground obstacles and darken image edges (shown in Figs. 2e7). For
stationary imaging systems, manually-annotated masks are
commonly used to obtain the sky area and to discard the other
areas that are not useful to solar forecasts [27,30]. However, in the
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new sky-imaging system presented here, each image captured re-
quires a specific mask because the camera is non-stationary.
Generating manually-annotated mask for each sky image is not
practical for automatic real-time forecasts. Therefore, a smart
masking algorithm has been developed to automatically analyze
the color gradients of an image and to segment the sky area from
the other, less-informative areas. Once the sky area is identified
using the automatic masking algorithm, image features are
extracted from the sky area and are used as exogenous inputs to a
stochastic-learning model (MultiLayer Perception (MLP) in this
work) to forecast intra-hour DNI.

We describe the new sky-imaging system in Section 2. The
automatic masking algorithm and DNI forecasting model are pre-
sented in Section 3. The statistic metrics used to assess the DNI
forecasts are also presented in this section. Operational results are
presented in Section 4, and conclusions are presented in Section 5.
2. Data

A Multi-Filter Rotating Shadowband Radiometer (MFR-7, man-
ufactured by Yankee Environmental Systems) has been installed at
University of California San Diego (latitude ¼ 32.881�,
longitude ¼ �117.238�) to measure the DNI components of
broadband solar irradiance. The DNI data are sampled everyminute
and are logged using a Campbell Scientific (CR1000) data logger.
Two Vivotek fisheye cameras (model FE8171V) have been installed
close to the MFR-7. These cameras collect 8-bit RGB sky images
(1536 � 1536 pixels) using 3.1 MP CMOS sensors and a 360�

panoramic-view lens. One camera has been installed in a stationary
position with its lens pointing to the zenith. This stationary camera
(named SkyCam) captures whole-sky images centered at the
zenith. The other camera (named SunCam) is mounted on an
Eppley automatic solar tracker that points the camera lens toward
the apparent position of the Sun. A photo of the employed Sun-
centered devices is presented in Fig. 1. The captured images (see
sample images in Figs. 6 and 7) are transferred via FTP to a UCSD
server once per minute. The DNI data and the sky images are stored
in a MySQL database. DNI measurements and sky images with the
same time label are grouped as data instances.

The analysis of this work uses 44,393 data instances (from June
20, 2013 to August 25, 2013; nighttime measurements have been
Fig. 1. Photo of the employed MFR-7 (quoted with red dash square), SkyCam (quoted
with yellow square), and the SunCam (quoted with red square). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
discarded). The first 30,000 data instances (from June 20, 2013 to
August 03, 2013) are assigned as a training set for model training
and optimization. The remaining 14,393 data instances (Aug 03,
2013 to Aug 25, 2013) are assigned as a testing set to assess the
performance of the forecasting models. Both the training and
testing sets include the diverse conditions of weather and cloud
content.

The MFR-7 is a first-class radiometer that meets the accuracy
requirements of this work. The fisheye lenses of both the SkyCam
and the SunCam are regularly cleaned to maintain satisfactory
image quality. Images with excessive amounts of dust are manually
discarded. In addition, the analysis of this work uses data instances
when the solar elevation angle is higher than 15� to reduce the
effect of ground obstacles (e.g. trees, buildings).

3. Methods

3.1. Automatic masking algorithm

SunCam moves to track the diurnal pattern of the Sun. There-
fore, automatic masking algorithm has been developed to segment
the sky area from obstacles and image edge for each SunCam image.
The algorithm is suitable for images from both SkyCam and Sun-
Cam, making it a universal algorithm. The automatic masking al-
gorithm initiates with a Sun locating algorithm.

3.1.1. Sun locating algorithm
The Sun locating algorithm considers seven features of a sky

image: Red (R), Green (G), Blue (B), Hue (H), Saturation (S), Value
(V) and Intensity (I). The features are all normalized to 0e1 range.
As shown in Fig. 2, the Hue and Saturation of Sun area are relatively
small while the Red, Green, Blue, Value and Intensity are relatively
large. Therefore, image features F8 is introduced, which is defined
as:

F8 ¼ logical
�
Rþ Gþ Bþ V þ I

5
� H þ S

2
> qe

�
; (1)

where qe is a threshold which is set to 0.85 empirically. As shown in
Fig. 3(b), only pixels in the circumsolar region have non-zero F8.

The following process is used to eliminate the outsiders shown
in Fig. 3(b): First define [#rows, #cols] as the locations of non-zero
elements of F8; Then define [#rows*, #cols*] as the locations of non-
zero elements within one standard derivation of all [#rows, #cols];
finally the Sun location in an image is calculated as:

SunL ¼ ½meanð#rows*Þ; meanð#cols*Þ�: (2)

Fig. 3(c) shows the algorithm finds the location of the Sun
successfully.

3.1.2. Masking algorithm
As shown in Fig. 2, the Red, Blue, Green, Value and Intensity

features of obstacles are smaller than that of sky. Therefore, a
feature vector is defined to differentiate sky area from obstacles:

F
!¼ ½R;G;B;V ; I�: (3)

The gradient of feature vector F
!

is calculated to find the edges of
obstacles (Fig. 3(d)),

V F
!¼ d F

!

d x!¼
X5
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dFi
dx

�2

þ
�
dFi
dy

�2
s

: (4)

The edges are,



Fig. 2. Seven features of sample sky image.

Fig. 3. The masking result of the sample sky image.
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Edgeraw ¼ logical
�
V F
!

>V F
!

c

�
: (5)

where V F
!

c is such when 10% pixels have V F
!

>V F
!

c. The Edgeraw of
sample sky image is shown in Fig. 3(e). The center of the Sun ap-
pears as a black dot in some of the sky images because the Sun is too
bright for the digital camera. The black dot results in a large feature
gradient, which is similar to the edge between sky area and ob-
stacles. Therefore, the Sun locating algorithm is used to identify and
eliminate the black dot. The large feature gradient caused by dusts
on cameras are also eliminated using Matlab 2013 bwareaopen
function (Fig. 3(f)). The edge points are located and connected to
generate the obstacle mask as shown in Fig. 3(g) and (h).

During partly-cloudy periods, the edges of clouds and sky can be
mistakenly identified as edges of obstacles by the masking algo-
rithm (shown in Fig. 4(b)). Because the location of the obstacles are
nearly unchanged at the same time in several consecutive days
while the location of the clouds are different, the common edges
from five images taken at the same time from five consecutive days
are considered as the ‘true’ edges of obstacles. After the correction
using five images, the algorithm works successfully for partly-
cloudy images as shown in Fig. 4(c).
3.1.3. Performance of the masking algorithm on SunCam
The Sun always locates at the centers of the SunCam images.

Therefore, distance de of the algorithm-derived Sun locations and
the center of the images are calculated to assess the performance of
the Sun locating algorithm. In general, the Sun-locating algorithm
achieve excellent performance during clear period (average de < 10
pixels). However, the Sun-locating algorithm may have relatively
large errors during overcast period when the Sun is obscured by the
stratiform clouds. During partly-cloudy period, the cloud
enhancement [31,32] may slightly degenerate the accuracy of the
Sun-locating algorithm. The de calculated from days with different
weather are plotted in Fig. 5. The average distance is 57-pixel that



Fig. 4. The masking correction for cloudy time.
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corresponds to 3.71% of the size of the image.
The automatic masking algorithm is applied to 15 randomly

picked SunCam images, which consist of different weather condi-
tions, and achieves satisfied performance. The example results of
automatic masking algorithm for SunCam images are shown in
Fig. 6. For both overcast time (Fig. 6(a)), partly-cloudy time
(Fig. 6(b) and (c)) and clear time (Fig. 6(d)), the algorithmmasks out
obstacles correctly.
3.2. Multilayer preceptron

MultiLayer Preceptrons networks (MLPs) are widely used as
stochastic learning tools for solar modeling and forecasting
[33e35]. MLPs are one of the most established ANN architectures
and are capable of performing non-linear classification and
regression [36]. The basic processing elements of MLP are called
neurons, which are placed in layers. The layers between the first
input layer and the last output layer are called hidden layers [37]. In
this work, the employed MLPs have 1 hidden layer with 7 neurons
as suggested by Chu et al. [27,29]. Each neuron of the hidden layer
sums the weighted inputs, adds a bias to the sum, and then process
the sum using an activation function to generate outputs. The signal
processing of neurons can be mathematically expressed as:

Yi ¼ f

0@XM
j¼1

�
wijXj þ bij

�1A; (6)

where Yi is the output of the i-th neuron on current layer,wij and bij
Fig. 5. Relative Sun location derivation error with respect to solar zenith angle is
plotted. The relative error is defined as de/M. Results of six different days are plotted,
including both clear periods and cloudy periods. The six days are June 21st, June 28th,
July 8th, July 15th, July 23rd and August 14th.
are the weight and bias of the j-th input on the i-th neuron,M is the
number of inputs, Xj is j-th output from previous layer, and f($) is
the activation function, which is a sigmoidal function in this work
[38].

f ðyÞ ¼ 1
1þ e�y : (7)

A supervised learning process is applied to estimate the weight
wij and bias bij using the training data. The learning process is the
Bayesian regularization process with Levenberg-Marquardt opti-
mization [3]. This is an iterative process that stops once the
discrepancy with respect to target is lower than a preset value. The
procedure of the training can be summarized as [39]:

1. Set the number of layers, number of neurons in each layer, and a
tolerance parameter ε > 0

2. Initialize the values of MLP parameters weight vector (wi
j,

i ¼ 0,1,2,…,L) randomly.
3. Calculate the neuron outputs Xi

j ¼ f ððwi
jÞT Xði�1ÞÞ and final

output errors εLj ¼ Yj � XL
j using the initial MLP weights and the

training data.
4. Calculate the output delta dLj ¼ ε

L
j f ’ððwL

j ÞTXL�1Þ.
5. Calculate the propagation errors for hidden neurons

ε
i
j ¼

PNþ1
i¼1 diþ1

j wiþ1
j and the hidden delta dij ¼ ε

i
jf ’ððwi

jÞTXði�1ÞÞ.
6. Update the weight vector wiþ1

j ¼ wi
j � hdijX

i�1, where h is the
learning rate coefficient.

7. Repeat step 3e6 recursively until the difference in error changes
Dε ¼ ε

i � ε
i � 1 less than the tolerance parameter Dε � eT.

8. Output the weights determined in the final round.

Once the training is finished, the MLP-based model is able to
perform real-time forecasts with new inputs Xnew(t).

Yðt þ DtÞ ¼ MLPðXnewðtÞÞ: (8)
3.3. Image processing and numerical inputs

Stochastic learning methods require numerical inputs. There-
fore, images need to be processed and translated into numerical
information. The numerical information is then used as exogenous
inputs to the proposed stochastic MLPs. In this work, we calculate
three Normalized Red Blue Ratio (NRBR) parameters [27,40] for an
image: mean, standard deviation, and entropy. Mean

m ¼ 1
n

Xn
i¼1

NRBRi; (9)

where n is the number of pixels in the sky area of an image. Stan-
dard deviation



Fig. 6. Masking results of SunCam images.
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðNRBRi � mÞ2
vuut : (10)

Entropy

e ¼ �
XnB

j¼1

pjlog2
�
pj
�
; (11)

where pj is the relative frequency for the jth bin (out of nB ¼ 256
evenly spaced bins).

The NRBR parameters are employed instead of detecting actual
cloud cover information for two reasons: (1) Available cloud
detection methods are not specified for the SunCam images and
their accuracy are compromised when applied to SunCam images.
(2) Comparing to cloud detection methods, calculating the NRBR
parameters significantly reduces the computational cost and ach-
ieves competitive performance [29]. Sample original and NRBR
images for both SkyCam and SunCam are shown in Fig. 7.

In addition to the NRBR parameters, seven time-lagged DNI
measurements (ranging from 0 to 30min in steps of 5min) are used
as endogenous inputs because the latest measurements of DNI are
highly informative for very short-term DNI forecasts [3]. To eval-
uate the benefits of SunCam-based forecasts, three MLP-based
forecasting models are trained and tested using three different
input sets respectively: MLP endogenous model, which uses
endogenous inputs only; MLP with SkyCam, which uses endoge-
nous inputs with SkyCam NRBR parameters; and the proposedMLP
with SunCam, which uses endogenous inputs with SunCam NRBR
parameters.
3.4. Model assessments

Four statistical metrics are used to assess the performance of the
employed MLP-based models: mean biased error (MBE)

MBE ¼ 1
n

Xn
t¼1

�bBðtÞ � BðtÞ
�
; (12)

where the n is the number of testing instances, bB is the prediction of
the MLP-based models and B is the measured irradiance mean
absolute error (MAE)

MAE ¼ 1
n

Xn
t¼1

�����bBðtÞ � BðtÞ
�����; (13)

root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

�bBðtÞ � BðtÞ
�2

vuut ; (14)

and forecasting skill (s)

s ¼ 1� RMSE
RMSEp

: (15)

The forecast skill measures the improvements of the MLP-based
models over a reference model in terms of RMSE.

In this work, the reference model is the persistence model,
which is the simplest forecasting model and is widely recom-
mended as a reference model for solar forecasts in literature
[1,9,21,28,41]. The persistence model assumes that the clear-sky
index [1] persists within the forecast horizon. Therefore, persis-
tence model achieves excellent performance under stationary
weather conditions. The persistence model is mathematically
expressed as:

bBpðt þ FHÞ ¼ BðtÞ
BclrðtÞ

� Bclrðt þ FHÞ; (16)

where bBp is the prediction of the persistence model, subscript p
represents persistence, t is the time when forecast is performed, FH
is the forecast horizon, B is the forecast variable (DNI in this work),
and Bclr is the clear-sky DNI, which is predicted using a clear sky
model.

The clear-sky model used in this work is an empirical model
[3,7]. This empirical model computes the dependence of the clear-
sky DNI on the sine of the solar elevation angle by a seven-order
polynomial expression. Least square method is applied to derive
the parameters of this polynomial expression using data from six
clear-sky days, which are manually selected from the training set.
The mean relative error for this empirical model is 1.93% when
tested using the training data. Compared tomost available clear-sky



Fig. 7. Sample original images (top row) and NRBR images (bottom row). (a) and (b) SkyCam images (2013-06-30 and 2013-07-02), (c) and (d) SunCam images (2013-06-30 and
2013-07-02).
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models, this empirical model is superior in terms of accuracy,
simplicity, and ease of implementation, particularly for the avail-
able data period [29]. If Linke Turbidity coefficient is available, the
Ineichen clear-skymodel [42,43] is recommended for longer period
at different locations.

4. Results and discussion

The MLP-based models, which are trained using different input
sets, are evaluated using the independent testing data and their
performances are compared to the reference persistence model.
The testing process simulates the real-time forecast scenario on
data collected from Aug 03, 2013 to Aug 25, 2013. The forecasting
performance in terms of the assessment metrics (defined in Section
3.4) are presented in Table 1. All MLP-based models and the
persistence models exhibit small MBEs. However, the MLP-based
models significantly outperform the persistence models in terms
of RMSE and forecast skill. MLP-based models that consider sky
imaging information achieve significantly higher forecast skill than
the MLP-based models that only consider endogenous inputs. The
improvement on forecast accuracy of stochastic learning models
Table 1
Testing results of the different forecasting models for 5, 10, 15, and 20 min horizons. The

Metrics Models Forecast horizons

5-min

MBE (W/m2) Persistence �2.5 (�0.003)
MLP Endogenous �3.9 (�0.005)
MLP with SkyCam �0.6 (�0.001)
MLP with SunCam 7.1 (0.009)

MAE (W/m2) Persistence 71.5 (0.088)
MLP Endogenous 71.6 (0.088)
MLP with SkyCam 68.8 (0.085)
MLP with SunCam 65.2 (0.08)

RMSE (W/m2) Persistence 139.8 (0.172)
MLP Endogenous 129.7 (0.16)
MLP with SkyCam 124.3 (0.153)
MLP with SunCam 116.3 (0.143)

Forecast skill MLP Endogenous 7.3%
MLP with SkyCam 11.1%
MLP with SunCam 16.9%
due to the integration of sky imaging system is also observed and
extensively discussed in earlier studies [28,44]. The results show
that the MLP-based models with SunCam achieve the highest
forecast skills that are 18%e50% higher than the forecast skills of
models with regular stationary SkyCam system. The SunCam im-
ages are focused on the Sun and therefore provide more detailed
sky-cover information about the circumsolar region. The circum-
solar sky-cover is particular important for very short-term solar
forecasts. Therefore, the SunCam-based forecasts achieve higher
forecast skills for shorter forecast horizons (e.g. 5-min) as pre-
sented in Table 1.

To further analyze the performance of the employed forecasts,
the Cumulative Density Functions (CDF) of the absolute forecast
errors for the 5-, 10-, 15- and 20-min horizons are plotted in Fig. 8.
In general, the averaged cumulative probability at different error
levels tends to decrease with the increase of forecast horizon since
longer horizons are more difficult to forecast [1]. However, more
than 60% of the errors from all employed models have magnitudes
less than 0.1 kW/m2 regardless of the forecast horizons. Most of
these small errors are observed during stationary weather condi-
tions such as clear or overcast periods. These results match the
values in brackets are the relative errors.

10-min 15-min 20-min

�5.5 (�0.007) �8.0 (�0.01) �11.3 (�0.014)
�5.8 (�0.007) �7.7 (�0.01) �10.9 (�0.013)
�1.9 (�0.002) �3.3 (�0.004) �7.0 (�0.009)
6.6 (0.008) 5.1 (0.006) 2.2 (0.003)
88.4 (0.109) 104.8 (0.129) 117.0 (0.144)
86.3 (0.106) 101.4 (0.125) 112.8 (0.139)
85.7 (0.106) 102.4 (0.126) 115.3 (0.142)
81.9 (0.101) 97.1 (0.12) 109.5 (0.135)
169.6 (0.209) 195.2 (0.241) 215.8 (0.266)
156.3 (0.193) 178.1 (0.22) 194.7 (0.24)
151.7 (0.187) 172.5 (0.213) 188.1 (0.232)
143.2 (0.177) 165.3 (0.204) 183.1 (0.226)
7.8% 8.7% 9.8%
10.6% 11.6% 12.8%
15.5% 15.3% 15.1%



Fig. 8. Plots of Cumulative Density Functions (CDFs) of forecast errors. (a) 5-min forecasts, (b) 10-min forecasts, (c) 15-min forecasts, and (d) 20-min forecasts. The size of bins used
to create the CDF is 80 W/m2.

Table 2
The results of A

ε
for different models and forecast horizons.

Models Forecast horizons

5-min 10-min 15-min 20-min

Persistence 50.2 63.7 78.9 88.6
MLP Endogenous 48.7 63.4 78.5 87.3
MLP with SkyCam 46.9 60.7 75.1 84.4
MLP with SunCam 42.3 57.1 70.7 82.2
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discussions in Refs. [7,28] that most solar forecasting models,
particularly the persistence models, achieve excellent performance
during stationary weather conditions when irradiance variability is
low. However, the errors of persistence models increase rapidly
with the irradiance variability during partly-cloudy periods [27]
because the persistence forecasts are unable to predict the irradi-
ance ramps caused by cloud covers [27]. Consequently, persistence
forecasts have a relatively higher percentage of errors with high
absolute values (>0.2 kW/m2).

The persistence errors represent the levels of variability in the
DNI time series [28]. The CDFs of the MLP forecasts approach 1
faster than the persistence forecast, indicating that the MLP fore-
casts significantly reduce the forecasting uncertainty in DNI time
series. Compared to the persistence forecasts, all MLP-based fore-
casts have less occurrence of large errors and therefore have higher
cumulative probabilities for moderate error level (0.1 kW/
m2 <|ε| < 0.4 kW/m2). The SunCam-MLP models show significantly
higher cumulative probability for the moderate error level, indi-
cating that SunCam-based MLP forecasts have less proportion of
mid- and large-size errors. For instance, in Fig. 8, the probability of
SunCam-MLP errors greater than 0.3 kW/m2 is 0.06 while the
probability of persistence errors greater than 0.3 kW/m2 is 0.086,
which result in heavier tails in the CDFs of persistence error.
Therefore, the SunCam-MLP forecasts achieve the lowest RMSE and
highest forecast skills in Table 1.

To quantitatively analyze the differences among CDFs from
different models, the areas above the CDF are calculated using the
following mathematics expression:
Aε ¼
Z∞
0

ð1� CDFðεÞÞdε; (17)

where ε is the absolute error in the x-axis of Fig. 8. A
ε
for all

investigated forecasts are presented in Table 2. Smaller value of Aε

indicates that the CDF approach 1 faster and the percentage of large
errors is smaller. For instance, the results show that Aε increases
with forecast horizon for all models, which matches the previous
discussion that longer horizon forecasts are more challenging and
have larger forecasting uncertainties. The SunCam-based MLP
forecasts achieves the lowest Aε for all forecast horizons.

5. Conclusions

A novel sky-imaging system (SunCam) was developed using a
low-cost, high-resolution fisheye camera mounted on an automatic
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solar tracker. The camera is mounted on the solar tracker and is
continuously orientated toward the Sun to provide Sun-centered
sky images. An automatic masking algorithm is developed to cali-
brate the solar position and to separate the sky area from ground
obstacles in the sky images. Numerical image features are extracted
from the SunCam images to be used as exogenous inputs to
MultiLayer-Perceptron-network (MLP) models, and these models
are used to automatically forecast DNI for 5-, 10-, 15-, and 20-min
horizons.

The performance of the SunCam-based MLP models is assessed
using data from 23 continuous days, which includewidely different
weather conditions and cloud cover content. The performance of
the SunCam-MLP model is compared to three reference models: a
persistence model, an MLP-based model that considers only
endogenous inputs, and an MLP-based model that considers image
features extracted from a traditional stationary sky-imaging system
(SkyCam).

The results show that the new MLP-based model with the
proposed sky-imaging achieves robust improvements in fore-
casting skills, ranging from 15.1% to 16.9% depending on forecast
horizons. There is a robust improvement over both the reference
persistence model and the forecast obtained with a fixed camera
(SkyCam) over all forecast horizons.

This work successfully demonstrates the potential of proposed
imaging system to improve the short-term solar forecasts. The
current imager has been implemented an expensive Eppley Sun
tracker (USD 12,000). A new Sun tracker with light CCD camera is
under development in our group that will substantially reduce the
instrument cost below USD 500. The new tracking instrument will
enable multiple tests of the proposed imaging system for longer
time periods and at different locations.
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