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SUMMARY

The ever-growing installation of solar power systems imposes severe challenges
on the operations of local and regional power grids due to the inherent intermit-
tency and variability of ground-level solar irradiance. In recent decades, solar
forecasting methodologies for intra-hour, intra-day and day-ahead energy mar-
kets have been extensively explored as cost-effective technologies to mitigate
the negative effects on the power grids caused by solar power instability. In
this work, the progress in intra-hour solar forecastingmethodologies are compre-
hensively reviewed and concisely summarized. The theories behind the fore-
casting methodologies and how these theories are applied in various forecasting
models are presented. The reviewed mathematical tools include regressive
methods, stochastic learning methods, deep learning methods, and genetic algo-
rithm. The reviewed forecasting methodologies include data-driven methods,
local-sensing methods, hybrid forecasting methods, and application orientated
methods that generate probabilistic forecasts and spatial forecasts. Further-
more, suggestions to accelerate the development of future intra-hour forecasting
methods are provided.

INTRODUCTION

The surface of Earth receives a total value of 120 petawatt solar radiation, which is equivalent to 3.85 3

1024 J per year (Morton, 2006). Consequently, the solar energy received by the Earth every hour is enough

to power the entire globe for a year (Morton, 2006). Currently, solar energy technologies, such as Photo-

Voltaic photovoltaic (PV), concentrated solar thermal power (CSP), and concentrated PV (CPV), are func-

tionally ready and are almost financially competitive to extract the clean and inexhaustible power from

the Sun on a large scale (Perez and Perez, 2009; Inman et al., 2013). During the recent decades, in an effort

to fight climate change, to reduce pollution, and to provide accessible power to people in remote areas,

the global capacities of solar power technologies are growing rapidly (IEA, 2014). For instance, the global

cumulative PV capacity grew at an average rate of 49% per year since 2003 and is expected to supply 16% of

global electricity demand in 2050, according to the International Energy Agency (IEA) (IEA, 2014).

However, the ground level solar irradiance is highly variable and uncertain due to the complex interac-

tions between radiation and atmospheric constituents such as water vapor, aerosols, and clouds (Lave

and Kleissl, 2010). In addition, the presence and concentration of the aforementioned atmospheric con-

stituents have high temporal and spatial variability, which further contributes to the variability of ground-

level solar irradiance (Inman et al., 2013). The variability and uncertainty of irradiance in turn compromise

the reliability of solar power generation by causing significant fluctuations (solar ramps) in power produc-

tion (Lave and Kleissl, 2010). Therefore, the increasing level of penetration of solar power into the

electricity market challenges the operations of the power grids by introducing instability in the power

generation side. Power grids need to balance generation and consumption in real time (Chu et al.,

2013). Therefore, sudden drops in power productions (if not anticipated and managed in time) will cause

fluctuations in grid voltage and frequency and adversely affect the stability of the grids, even causing

grid failures. Boyle (Boyle, 2012) identified several challenges to integrate variable/intermittent renew-

ables like solar into the power grids: (1) unpredictable and steep ramps, (2) allowances for errors in

the forecasts of renewable resources, (3) intra-hour variability. One technological approach to mitigate

solar power variability is to incorporate grid-wide power storage system (Crabtree et al., 2011). However,

high costs, limited capacity and lifetime, and safety considerations hinder the large-scale deployment of

battery storage systems with solar power.
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Figure 1. Temporal and spatial coverage of most widely employed solar forecasting methodologies

Reproduced according to (Inman et al., 2013).
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A cost effective technological alternative to mitigate the solar variability is to develop a smarter and more

dynamic power grid based on accurate solar forecasts. High-fidelity solar forecasts are also essential for

grid regulation, load-following production, power scheduling, and unit commitment (Inman et al., 2013).

Since solar forecasting is a low cost approach to facilitate solar power integration, increasing demands

for solar integration have motivated the development of different solar forecasting methodologies for a

large span of temporal and spatial resolutions (Samu et al., 2021). The temporal and spatial coverage of

different solar forecasting methodologies are illustrated in Figure 1. Satellite-based remote-sensing

methods (RSs) have data sampling every 5 to 15 min, which are mostly applied in intra-day (1–24 h ahead)

forecasts (Larson and Coimbra, 2018; Pedro et al., 2019b). Numerical Weather Prediction (NWP) models

generate predictions of meteorological variables (at most every 5 min) and solar irradiance (at most every

hour), which can be used for both intra-day and day-ahead forecasts (Inman et al., 2013; Larson et al., 2016;

Pedro et al., 2019b). The meteorological variables predicted by NWPmodels such as air temperature, rela-

tive humidity, and wind speed are sometimes used as exogenous inputs to solar forecasting models when

local meteorological measurements are not available (Du, 2018). The hourly solar irradiance predictions

from NWP models are sometimes used as a benchmark for data-driven or hybrid forecasting methods.

Often, the performance of data-driven methods is found to be superior to NWP predictions when forecast

horizons are less than four hours (Voyant et al., 2017). Intra-hour forecasts have a forecasting horizon of less

than one hour, thus the input data should have high sampling rate (less than 1-min or at most 5-min) and low

computational latency to meet real-time forecasting needs. Therefore, the inherent temporal resolutions

(>5 min) of RS and NWP models are inadequate for the relatively short forecast horizon (Inman et al.,

2013; Ahmed et al., 2020). In addition, the locally refined Weather Research and Forecast (WRF) models

is not the same as NWP because it is not taking into consideration boundary/initial conditions from

different fronts, but simply adapting conditions that may not be refreshed as frequently as needed for

effective short-term forecasts. To the best of the authors’ knowledge, neither NWP or WRF methods

have been adopted operationally for intra-hour horizons by solar power plant managers over several years

and under multiple seasons. In this work, we choose to concentrate on methodologies that have been de-

ployed by the solar energy generators in order to improve the operation and integration of solar power

plants, and therefore we do not cover NWP-based methodologies due to the larger computational latency

time required to run appropriate simulations with standard computational equipment. More details about

NWP- and RS-based forecastingmodels can be found in (Inman et al., 2013; Diagne et al., 2013; Antonanzas

et al., 2016; Sharma and Kakkar, 2020; Ahmed et al., 2020).

This work focuses on the review of recent development in intra-hour solar forecasting, which tackles the

challenges of steep ramps and intra-hour variability. Intra-hour forecasts of solar power are essential for

real-time grid balancing, unit commitment, storage system optimization, automatic generation control

(AGC), and operating regulation reserves (Sayeef and Scientific, 2012). The benefits of intra-hour solar
2 iScience 24, 103136, October 22, 2021



Table 1. Benefits of intra-hour solar forecasts for different applications (West et al., 2014)

Applications Benefits

Off-grid PV with ancillary generation Reducing network step loads and consumption of backup fuel

Distributed PV (residential) Disaggregating local generation and demand, informed operation of network

Centralized utility PV Improving ramp-rate control, inverter control, and informed production

management

Utility CSP Protection of over-production, improving flux management, reducing fatigue

of plant component

Energy markets Informed generation planning and dispatch, management of spot-market

revenue, increasing schedule efficiency of maintenance
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forecasts for several commercialized solar power applications are summarized in Table 1 (West et al.,

2014).

This work presents a comprehensive review of the theoretical basis and methodologies for intra-hour solar

irradiance and power production forecasts. By surveying literature, we find that the development of intra-

hour solar forecasting methodologies has achieved remarkable progress in recent years, and has shown

great potential in mitigating solar uncertainty and reducing the integration costs. Most available solar fore-

casts reviews focus on either PV power forecasts or intra-day and day-ahead forecasting horizons. There-

fore, the major contributions of this work are:

� Intra-hour solar forecasts require finer temporal resolutions to capture rapidly changing solar ramps.

Methods that are dedicated for hourly or daily forecasts might not be applicable to intra-hour fore-

casts. Therefore, this review focuses on the techniques and methods that are designed for intra-hour

forecasting horizons, which have not been extensively investigated and reviewed.

� In recent years, deep learning methods have been introduced in the intra-hour forecast domain to

conduct sky image analysis and time series forecasts. This work reviews the recent progress of

deep learning empowered hybrid methods. Some deep learning methods are developed for longer

forecasting horizons but have the potential to be adapted for intra-hour forecasts. Therefore, these

deep learning methods are also reviewed in this work to inspire and enlighten similar research for

intra-hour forecasts.

� In addition to forecasting theories and technologies, this work reviews methods and considerations

from application aspects, such as probabilistic forecast, spatial forecasts and optimization distribu-

tion of observatories. Several key aspects for application orientated forecasts are identified and dis-

cussed for future research outlook.

� This work also reviews the diverse forecasting basics in a standardized approach. The authors notice

that some of the state-of-the-art publications do not explicitly clarify their forecast horizons, tempo-

ral and spatial resolutions, or input variables when reporting forecast models. Comparing methods

from different works is impractical without standard dataset and metrics. Therefore, input data,

assessment metrics, open source data set, and other considerations for modeling standardization

are reviewed and recommended in this work.

� With the increasing demands of solar power integration, the research community of solar forecasts is

growing rapidly. A reader - friendly review will be helpful for new students and junior scholars to

initiate relevant researches. Therefore, in addition to reviewing advanced forecasting methods for

senior researchers in the field, we also review the algorithms of conventional methods (Section S2)

and provide their limitations in order to provide useful background knowledge for beginners.

In forecasting basics, we present fundamental considerations for solar forecasts, such as irradiance moni-

toring, forecast inputs, and forecast assessments. State-of-the-art forecasting methods are presented in

intra-hour solar forecasting methods for single location and application orientated forecasting methods.

In discussions and outlook, we present our identifications of major existing challenges for current

solar forecasting methodologies and provide our perspectives on how to solve these identified

challenges in the near future. The conclusions are summarized in the conclusions. The commonly employed
iScience 24, 103136, October 22, 2021 3
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mathematical tools for the development of intra-hour solar forecasting models are summarized in the sup-

plemental information for easier reference by interested readers.
FORECASTING BASICS

In this section, fundamental concepts and background knowledge to understand and develop solar fore-

casts are presented. The fundamental considerations include the following: solar irradiance monitoring,

clear-sky models and clear sky index (Section S1), common inputs for solar forecasting models, and assess-

ment metric for quantifying the forecasting performance.
Solar irradiance monitoring

Irradiance components and applications

Extraterrestrial solar radiation at the top of the atmosphere is 1.36 kWm�2 with an annual variation less than

0.1% (Coddington et al., 2016). Ground-level solar radiation has a highly variable value that depends on

location and local atmospheric conditions. The total solar radiation incident on a horizontal ground-level

surface is called the Global Horizontal Irradiance (GHI). Based on the direction of solar irradiance, GHI can

be further divided into Direct Normal Irradiance (DNI) and Diffuse Irradiance (DIF), where DNI is the

ground-level radiation arriving normally from the solar beam and includes some portion of circumsolar ra-

diation (Blanc et al., 2014) while DIF is the radiation scattered by the atmosphere that reaches the ground

from all other directions. The relationship between GHI, DNI, and DIF is

GHI = DNI cosðqzÞ+DIF; (Equation 1)

where qz is the solar zenith angle, whose complementary angle is called the solar elevation angle

qeðqz + qeÞ = 90+. Compared with GHI, DNI is more sensitive to atmospheric cloud covers and aerosol con-

centrations. For instance, moving clouds can drop the DNI from several hundreds of Wm�2 to zero in a few

seconds (Chu et al., 2013).

The operational PV generation and the GHI are highly correlated. Therefore, the accelerated growth of PV

capacity has motivated extensive research on GHI resourcing and forecasting. On the other hand, the

concentrated solar power (CSP) technologies only utilize the DNI component by tracking the Sun in real-

time. Therefore, the recent rapid development of worldwide CSP systems has encouraged strong research

interests in DNI resourcing and forecasting.

Irradiance measuring instruments

Intra-hour solar forecasting models are developed and validated using broadband solar irradiance mea-

surements. Most of the measuring instruments utilize three types of sensors: absolute cavity, thermopile,

and photodiode.

The absolute cavity radiometer, first developed by Angstrom in 1893, is a self-calibrating sensor using the

electrical substitution method (Fröhlich, 1991). The absolute cavity radiometer consists of an absorber and

a cavity that isolates the absorber from the environment. During operation, the absorber receives radiation

and its temperature increases to a stabilized value when absorbed radiative flux equals the heat loss. Then a

substituting electrical current is applied to the absorber when radiation is blocked. When the temperature

increase of electric heating equals that of the radiative heating, the received radiation is considered to be

the electrical power. The cavity can be cooled to cryogenic state to further increase the accuracy of the ab-

solute cavity sensor (Rice et al., 1998). Absolute cavity radiometers are considered to be the absolute stan-

dard of radiation measurement (Myers, 2005). The World Radiometric Reference (WRR) at the Physical

Meteorological Observatory in Switzerland uses an absolute cavity radiometer to establish the standard

solar radiation measurement (Guide, 2006). Absolute cavity radiometers achieve high accuracy and their

overall uncertainty after considering radiation loss, non-equivalence between solar and electrical heating,

and other influential factors are less than 0.35% (Myers, 2005). However, their setup and maintenance are

expensive. Therefore, in-field applications usually employ thermopile or photodiode as radiation sensors.

Thermopiles aremade of several connected thermocouples that convert temperature gradient into voltage

signal based on thermoelectric effect (the Seebeck effect, discovered by Seebeck in 1821) (Roncaglia and

Ferri, 2011). When a conductor is placed between a heat source and a heat sink, the thermoelectric effect

occurs in between the two ends of the conductor and generates a voltage. The magnitude of the voltage
4 iScience 24, 103136, October 22, 2021
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depends on both the temperature gradient and the Seebeck coefficient of the conductor (Van Herwaarden

and Sarro, 1986). By measuring the voltage difference generated from two conductors with different See-

beck coefficients, the temperature of the heat source can be estimated (Graf et al., 2007). A thermopile is a

series of connected thermocouples for a higher output voltage. Thermopiles are reliable radiation sensors,

but their applications are hindered by their significant capital costs. Therefore, photodiode sensors are

often applied as a cost-effective alternative to measure irradiance (Martı́nez et al., 2009).

Photodiodes, which are normally PIN junctions (Gärtner, 1959), can be considered as small-area solar cells

that directly convert photon energy into electricity. A photodiode can work in either photovoltaic or photo-

conductive mode (Weckler, 1967). In photovoltaic mode, bias correction is not required, but the output

voltage is non-linearly dependent on the radiation level. In photoconductive mode, a reverse bias correc-

tion is required. The reverse bias will increase the width of the depletion layer, decrease the capacitance of

the PIN junction, and reduce the response time. The voltage output of the photoconductive mode is line-

arly dependent on the radiation level at the expense of increased noise level (Kerr et al., 1967). The pho-

todiodes respond quickly to radiation changes and can be easily connected to electronics, but have

compromised accuracy due to their nonlinear spectrum responsivity (Bush et al., 2000).

Pyranometers and pyrheliometers are common in-field radiometers with either thermopiles or photodi-

odes sensors. According to the ISO standard (ISO, 1992), in-field radiometers are classified as secondary

standard, first class and second class radiometers. The secondary standard radiometers are designed

for scientific research studies such as meteorological study and system/materials testing, which require

high-level of accuracy and reliability. First class radiometers provide good quality measurements for hy-

drology networks and climate control of green houses. Second class radiometers are economical, which

are often applied in field testing and weather stations.

Pyranometers measure irradiance on a plane surface (GHI, if the surface is horizontal) from all hemispherical

solid angles (Martı́nez et al., 2009). Pyranometers with a rotating shadow band or ring can measure DNI

and DIF as well (Michalsky et al., 1986). Commercial thermopile-based pyranometers have nearly constant re-

sponsivity to broadband spectrum (King et al., 1997), who usually have high accuracy and are classified as sec-

ondary standard instruments. For radiation measurements with moderate accuracy requirement, photodiode

sensors are widely used in first class pyranometers as economical alternatives (Medugu et al., 2010).

Pyrheliometers are the instruments for DNI measurements, which continuously track the Sun. Most pyrhe-

liometers use thermopile sensors. Pyrheliometers using photodiode sensors share similar advantages and

drawbacks as photodiode-based pyranometers (Gnos et al., 2011).

Data quality control

Inaccurate measurements adversely affect the estimation of model parameters, the credibility of model

assessments, and the accuracy of solar forecasts. Therefore, data quality control to maintain high-quality

irradiance data is essential for solar resource assessments and forecasts.

Younes et al. (Younes et al., 2005) discuss in detail about the errors of irradiance measurements where they

categorize the errors into equipment error and operational errors. Equipment errors arise from the issues

associated with the instrument such as cosine response, temperature response, spectral response, and

dark offset. Regular calibrations of the radiometers are necessary to minimize the equipment errors. Myers

(Myers, 2005) discusses in detail the developments in calibration of broadband solar radiometers. In 2014,

National Renewable Energy Lab (Habte et al., 2014) evaluated various commercial radiometers with a refer-

ence instrument and showed that measurements generally exhibit significantly higher errors during cloudy

periods than during clear periods.

Operation errors arise from issues associated with data measuring and transferring such as: dust, snow, wa-

ter droplets, bird droppings, shaping or reflecting of ground obstacles (e.g. buildings), errors in tracking

system, unexpected issues during data logging, transferring, and storing. Therefore, post-measurement

quality control is necessary to address the operation errors and to ensure high quality measurements.

Significantly contaminatedmeasurements, such as negative values of irradiancemeasurement or abnormal

ramps during periods of stationary weather conditions, can be removed bymanual inspection. A secondary
iScience 24, 103136, October 22, 2021 5



Table 2. Commonly used input variables for intra-hour solar forecasting applications

Category Variables

Solar irradiance GHI, DNI, DIF, Clear sky indices, irradiance of specific spectrum, neighbor irradiance

measurements (from sensor network)

Meteorological data Pressure, temperature, relative humidity, wind speed, wind direction, precipitation, aerosol

optical depth, cloud cover

Sky image features Pixel-wise cloud cover ratio, cloud movement vector, whole image features (see local-sensing

methods for more details)

Other solar zenith angle, solar azimuth angle, local time, solar time
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radiometer can be deployed at the same location to provide secondary measurements for comparison to

control data quality. For example, Chu et al. (Chu et al., 2015b) deploy a relatively cheaper first-class

rotating shadowband radiometer close to a secondary-standard Eppley normal incidence pyrheliometer

and continuously compare the measurements from both devices to ensure the data quality. Other than

time-consuming manual inspections, semi-automatic or automatic assessment algorithms have been pro-

posed for data quality control. For instance, Geiger et al. (Geiger et al., 2002) propose a helioclim quality

control algorithm to perform a likelihood control that checks the plausibility of data. This algorithm detects

plausible data by comparing measurements with expectations calculated from geographical coordinates,

elevation and local time. Tregenza et al. (Tregenza et al., 1994) proposes a five-level test, which derives the

likelihood of measurements comparing the measurement values with the expected values. The first two

levels consider GHI, DNI, DIF, and the corresponding illuminance. The third level considers north, east,

south, and west global irradiance and illuminance. The fourth level compares irradiance with illuminance.

The fifth level compares the zenith luminance with either DIF or illuminance. Data that have likelihoods

lower than the predefined thresholds are likely to be contaminated and will be excluded from future anal-

ysis. Muneer and Fairooz (Muneer and Fairooz, 2002) combine the method of Tregenza et al. (Tregenza et

al., 1994) and Page irradiance model (Page, 1997) to develop a four-level testing method. The first level is

the same as the CIE method. The second level tests the consistency between DIF and GHI. The third level

checks the DIF conforming to the limits of an acceptance envelope. The fourth level compares the

measured DIF with DIF under two extreme conditions calculated using the Page irradiance model. Younes

et al. (Younes et al., 2005) review the above methods and develop a semi-automated method. This method

conducts physical and statistical tests based on an envelope of DIF over GHI ratio domain. This method is

capable of assessing large data sets efficiently with lesser amount of inputs.

Common inputs to forecasting models

The output of solar forecasting models is the future solar irradiance or power output. The inputs of fore-

casting models vary between models, and the selection of inputs is an essential step in developing a fore-

casting model. Commonly used inputs for intra-hour solar forecasting applications are as follows: historical

and current irradiance data, local meteorological data, and sky image features. Summarized input variables

are presented in Table 2.

Measured irradiance data

Irradiance measurements or clear sky indices are commonly used as endogenous inputs and training tar-

gets in solar forecastingmodels. For intra-hour forecast horizons, lagged 30min–60min data with temporal

resolutions ranging from 1 min to 5 min are most frequently used in the literature. However, solar fore-

casting models with only endogenous inputs are not adequate to accurately predict solar ramps caused

by evolving clouds (Florita et al., 2013; Chu et al., 2015b). As the prediction of the solar ramp is essential

for inverter control, plant management, and real-time dispatch operations, exogenous inputs to the fore-

casting models are necessary. The exogenous inputs such as meteorological data and cloud cover infor-

mation derived from sky images will enhance the accuracy of solar forecasts in predicting solar ramp events

(Marquez and Coimbra, 2013a).

Meteorological data

For intra-hour solar forecasting applications, commonly used meteorological variables are presented in

Table 2. The meteorological data can be obtained from local or nearby weather stations, or extracted

from NWP. In situ observations are preferred due to the considerations of high temporal resolution.
6 iScience 24, 103136, October 22, 2021
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However, if in situ observation is not available, high-resolution time series of meteorological data can be

interpolated from NWP as exogenous inputs (Du, 2018). Data normalization has been widely employed as

an effective method to enhance the robustness and generalization of the data-driven models (Aksoy and

Haralick, 2001; Jo, 2019). Data normalization increases the numerical consistency of data, improves the data

stability, and eases the object-to-data mapping (Shanker et al., 1996; Garcı́a et al., 2015). In the domain of

solar forecasts, the meteorological data are often normalized using either min-max scaling method (Jo,

2019) or standard score normalization method (Hogg et al., 2005). Min-max feature scaling normalization

is defined as:

Xnormalized =
X � Xmin

Xmax � Xmin
; (Equation 2)

where X is the value of a weather variable, Xmin and Xmax are the minimum and maximum values of X in the

data set, respectively. Standard score normalization is defined as:

Xnormalized =
X � m

s
; (Equation 3)

where m and s are the mean and standard deviation of X, respectively.

Local sky imaging data

NWPs provide cloud indices every 6 to 12 h that can be used for intra-day and day-ahead solar forecasts but

are not adequate for intra-hour solar forecasting applications (Inman et al., 2013). Therefore, local sensing

systems, such as sky imagers are employed to provide ground observed cloud information with high tem-

poral and spatial resolution. Since a high-resolution sky image can have millions of pixels, relevant studies

extract condensed numerical features from sky images as exogenous inputs. Feature engineering is per-

formed either by cloud detection methods (Marquez and Coimbra, 2013a; Quesada-Ruiz et al., 2014;

Chu et al., 2014) or by statistical RGB analysis methods (Chu et al., 2015b, a). Detailed sky image feature

engineering is presented in (Pedro et al., 2019a, b). However, these image feature extraction methods

are mostly manually crafted, which increase the deployment and transferring costs. To automatically and

effectively obtain useful features from sky images, convolutional neural network (CNN)-based hybrid

models are proposed in recent literature, which will be discussed in Sections S2.3.4 and deep learning

based end-to-end hybrid methods. More details of sky imaging systems and local sensing methods are

presented in local-sensing methods.

Assessment methods for forecasts

Various metrics have been used in literature to evaluate the performance of solar forecasts from different

perspectives. Note that the assessment of solar forecasts is a complex process that depends on specific

applications; a consistent and robust set of assessment metrics is not available (Zhang et al., 2015). In

this section, we summarized and discussed metrics which are popularly used to quantify the performance

of intra-hour solar forecasts and corresponding advantages and disadvantages. More discussions of fore-

cast assessment can be found in (Yang et al., 2020a), which standardizes the verification approaches for

deterministic solar forecasts.

Metrics to assess point forecasts

Statistical metrics are often used to quantify the discrepancies between the predictions bI against the mea-

surements (ground truths) I: mean biased error (MBE)

MBE =
1

n

Xn
t = 1

ðbIðtÞ� IðtÞÞ; (Equation 4)

mean absolute error (MAE)

MAE =
1

n

Xn
t =1

jbIðtÞ� IðtÞj; (Equation 5)

mean absolute percentage error (MAPE)

MAPE =
1

n

Xn
t = 1

����bIðtÞ � IðtÞ
IðtÞ

����3 100%; (Equation 6)
iScience 24, 103136, October 22, 2021 7
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root mean square error (RMSE)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t = 1

ðbIðtÞ � IðtÞÞ2
s

; (Equation 7)

coefficient of determination (R2)

R2 = 1� VarðbI � IÞ
VarðIÞ ; (Equation 8)

correlation coefficient (r)

r =
ðCovðbI; IÞÞ2
VarðbIÞVarðIÞ; (Equation 9)

Kolmogorov–Smirnov Integral (KSI) is used to assess the performance of a model in reproducing observed

statistical distributions

KSI =

Z
DIdI; (Equation 10)

where DI is the discrepancy in cumulative distributions between the predictions and the measurements,

and I is the magnitude of irradiance.

For industrial/utility-side applications, relative errors such as rMBE, rMAE, and rRMSE aremore commonly used

than absolute errors (Inman et al., 2013). Relative error is calculated by dividing the absolute error (MBE, MAE,

or RMSE) by a normalized denominator. Hoff et al. (Hoff et al., 2013) summarize three ways to calculate

the normalized denominator: (1) Average irradiance I = 1
n

P
IðtÞ, (2) weighted average irradiance IW =

1
n

P
WðtÞIðtÞ, where WðtÞ can be set to IðtÞ, (3) peak nominal irradiance/generating capacity C (e.g. C =

1000W/m2). An alternative way to calculate relative error is to substitutebI and Iwith clear sky index bkðtÞ and kðtÞ.

Another group of statistical metrics analyze the distribution of forecast errors ðεðtÞ = bIðtÞ � IðtÞÞ, they are:

Standard deviation (s) of error distribution

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ðεðtÞ � mÞ2

r
; (Equation 11)

where m is the mean value of εðtÞ.

Skewness (g) quantifies the level of the bias in error distribution

g =
m� n

s
; (Equation 12)

where n is the mode of the error distribution.

Kurtosis ðg2Þ evaluates the ‘‘peakedness’’ and tail heaviness of an error distribution

g2 =
1
n

P ðεðtÞ � mÞ4
s4

� 3: (Equation 13)

where high kurtosis indicates a sharper peak and longer, heavier tails (Joanes and Gill, 1998).

Rényi entropy ðHaÞ quantifies the uncertainty of a forecast (Hodge et al., 2012)

Ha =
1

1� a
log2

 Xm
i =1

pa
i

!
; (Equation 14)

where pi is the probability density for ith section of the error distribution. a is the order of Ha, and higher

magnitude of a puts higher weight on more probable events (Bessa et al., 2011).

In forecasting practices, a subset of the aforementioned metrics will be adequate to use. For example,

MBE, RMSE, and KSI are recommended by European and IEA (IEA, 2012) to assess the performance of
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forecasts. Zhang et al. (Zhang et al., 2015) evaluate most of the metrics using data from Western Wind and

Solar Integration Study Phase 2 (Lew et al., 2013) and conclude that (1) all evaluated statistical metrics are

sensitive to uniform forecasting improvements, (2) g, g2, and Ha are sensitive to ramp forecasting improve-

ments. MBE, RMSE, s, g, g2, and Ha are recommended by Zhang et al. to assess forecasts based on their

sensitivity analysis and statistical testing.

Persistence forecast and forecast skill

Forecasting performance in terms of common statistical metrics is dependent on geographic, seasonal, cli-

matic, and meteorological factors. For instance, a solar forecasting model usually has a substantially lower

RMSE during low-variable clear-sky period than high-variable cloudy period (Chu et al., 2013). Therefore,

forecasting performance evaluated during different geoclimatic conditions may not be directly compared

(Marquez and Coimbra, 2013b).

As a result, persistence forecast, which is the simplest forecast model, is often selected as a reference

model to benchmark the performance of advanced solar forecasting models. Persistence forecast assumes

that the magnitude of solar irradiance persists into the future:

bIpðt + FHÞ = IðtÞ; (Equation 15)

where bIp is the prediction from persistence model, subscript p represents persistence, t is the time point,

FH is the forecast horizon (the length of time into the future), and I is the measured irradiance at current

time.

To remove the effect of diurnal solar variations, a smart persistence forecast is proposed to assume that the

clear-sky index remains constant into the future:

bIpðt + FHÞ = IðtÞ
IclrðtÞIclrðt + FHÞ; (Equation 16)

where Iclr is the predicted clear sky irradiance from a clear sky model (see Section S1). Persistence model

achieves high accuracy during periods with low irradiance variability, particularly for very short-term fore-

casts (FH < 5min). However, the accuracy of persistence forecast decreases considerably during cloudy pe-

riods when the variability of solar irradiance increases.

Forecast skill is defined as the improvement of a forecastingmodel over the persistencemodel in terms of a

statistical error metric (mostly RMSE) (Marquez and Coimbra, 2013a):

s = 1� RMSE

RMSEp
: (Equation 17)

A positive value of s indicates that the evaluatedmodel outperforms the persistencemodel. Forecast skill is

considered as an assessment metric for more complex models that is independent of the forecast object,

forecast horizon, and geoclimatic factors. Therefore, it is widely used to assess intra-hour solar forecasts.

The disadvantages of using forecast skill will be discussed in Section weather-independent and value-

based metrics.

Metrics to assess ramp forecasts

It is widely recognized that accurate forecasts of solar irradiance ramps are important for plant manage-

ment, inverter control, and real-time dispatch operations for solar generations (Zhang et al., 2013; Florita

et al., 2013). Solar irradiance ramps have two common definitions: (1) the irradiance difference between the

start and end points of a time interval (Zheng and Kusiak, 2009; Kamath, 2010) and (2) the difference be-

tween minimum and maximum irradiance within a time interval (Florita et al., 2013). Therefore, two factors

shall be considered in the assessments of ramp forecasts: ramp duration and rampmagnitude (Zhang et al.,

2013).

Other than the above two ramp definitions, Florita et al. (Florita et al., 2013) develop a swinging-door al-

gorithm to characterize irradiance ramps. This algorithm uses only one variable ε, the width of a ‘‘door’’,

to extract irradiance ramps through identifying the start and end points of ramps. An example of ramp

extraction by this algorithm is described in Figure 2: (1) Initial/new iteration of algorithm starts on y-axis

with threshold doors of width ε. (2) The doors ‘‘swing open’’ until one of the door line intersects with the
iScience 24, 103136, October 22, 2021 9



Figure 2. Demonstration of swinging door algorithm for the extraction of ramps in time series

Adapted from (Florita et al., 2013).
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time series at point B. (3) Both door lines are parallel to each other, and the other door line extends result-

ing in a new intersection at point D. Therefore, the end point of a ramp is determined as the point D, which

is also used as the start point of a new iteration of the swing-door algorithm. Swing-door algorithm with a

small ε is sensitive to noise/insignificant fluctuations while a large ε skips ramps with relatively small

magnitude.

The statistics metrics discussed in the previous Section are not suitable to assess the performance of a

model in forecasting solar ramps. To date, there is no well-recognized metric to assess the performance

of ramp forecasts in the literature.

Zhang et al. (Zhang et al., 2015) evaluate a number of statistical metrics and conclude that skewness, kur-

tosis, and Rényi entropy are sensitive to the performance of ramp forecasts. However, the dependencies of

these three metrics on the performance of ramp forecasts are not quantified.

Chu et al. (Chu et al., 2015b) propose a method to assess ramp forecasts based on the second definition of

irradiance ramp. This method is applicable to forecasting models which provide discrete point forecasts.

First, ramps are identified using a threshold ε and three values: the irradiance values IðtÞ and Iðt +FHÞ
measured at times t and t +FH , and the prediction bIðt +FHÞ issued at time t, where FH is the forecast ho-

rizon. Then, Chu et al. define the ramp magnitude as the difference between the two measured irradiance

ðIðt + FHÞ � IðtÞÞ, and define the ramp prediction as the difference between the predicted and

the measured irradiance ðbIðt +FHÞ � IðtÞÞ. A ramp event is defined as the ramp magnitude exceeds the

threshold ε. The ramp prediction is counted as a ‘‘hit’’ if the ramp prediction (1) exceeds ε and (2) has

the same sign as the true ramp ðIðt +FHÞ � IðtÞÞ3 ðbIðt +FHÞ � IðtÞÞ>0. Otherwise, the ramp prediction is

counted as a ‘‘miss’’.

The performance of the ramp prediction is assessed using threemetrics: Ramp detection index (RDI), which

calculates the percentage of ‘‘hit’’ predictions:

RDI =
Nhit

Nhit +Nmiss
: (Equation 18)

False ramp index (FRI), which calculates the percentage of false ramp predictions (when ramp is predicted

but no ramp is observed),

FRI =
NFRP

NNR
; (Equation 19)
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where NFRP is the number of false ramp predictions, and NNR is the number of instances when no ramp is

observed. Ramp magnitude forecast index (RMI), which quantifies the forecasting performance in predict-

ing the magnitude of ramps:

RMI = 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNr

i = 1ðIðti + FHÞ � bIðti + FHÞÞ2PNr

i = 1ðIðti + FHÞ � IðtiÞÞ2

vuut ; (Equation 20)

where Nr is the number of ramp events. RMI represents the accuracy in predicting the ramp magnitudes.

For example, RMI = 1 means that magnitudes of all ramps are perfectly predicted.

Metrics to assess probabilistic forecasts

Probabilistic forecasts usually provide either prediction interval (PI) or probability density function (PDF).

There are three performance metrics (Khosravi et al., 2010, 2013) generally used to quantitatively assess

the predicted PI: Prediction interval coverage probability (PICP), which measures the probability when

target values are covered by the PIs:

PICP =
1

n

Xn
i = 1

ci; (Equation 21)

where ci = 1 indicates measured irradiance falls within the PIs, otherwise ci = 0.

Prediction interval normalized averaged width (PINAW), which measures the normalized average width

(informativeness) of PIs:

PINAW =
1

n

Xn
i = 1

Wi

Iclr;i
; (Equation 22)

whereWi is the width of PIs at the ith time instance and Iclr;i is the clear sky irradiance at the ith time instance

1.

Coverage-width-based criterion (CWC), which combines the information of both PICP and PINAW:

CWC = PINAW
�
1 + gðPICPÞehð1�a�PICPÞ�; (Equation 23)

where g depends on PICP:

g =

�
0 PICPR1� a
1 PICP<1� a

(Equation 24)

1�a is the applied nominal confidence level, h controls the weight of PICP in calculating CWC. Coverage prob-

ability (PICP) is suggested by Khosravi et al. (Khosravi et al., 2013) as the most important characteristic of PIs.

Therefore, a value between 50 and 100 can be set for h to highly penalize invalid PIs (cases when ci = 0).

To assess the predicted PDF, Brier score (BS) and continuous ranked probability score (CRPS) are

commonly used. BS measures the similarity between the predictions and the observations of the PDF fore-

casts (Delle Monache et al., 2013; Alessandrini et al., 2015). BS assigns probabilities to a set of mutually

exclusive discrete categories (Brier, 1950):

BS =
1

N

XN
t

XM
i

�
pti � Tti

�2
; (Equation 25)

whereN is the number of forecasting instances,M is the number of the possible categories of the observation,

p is the predicted probability of an instance, and T is categorical observation. BS with higher magnitude in-

dicates insufficient performance of probabilistic forecasts. Furthermore, BS is often used to calculate the Brier

Skill Score (BSS) to measure the relative performance of a proposed model comparing to a reference model:

BSS = 1� BS

BSref
; (Equation 26)

where BSref is the BS achieved by a reference model. Similar to the forecast skill, a positive value of BSS

indicates that the evaluated model outperforms the reference model. Therefore, contrary to BS, BSS

with higher magnitude indicates better performance of probabilistic forecasts.
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CRPS compares the cumulative distribution functions (CDFs) of predicted probabilistic distributions and

observations (Hersbach, 2000; Alessandrini et al., 2015):

CRPS =
1

N

XN
t

Z
ðPðbBðtÞ%xÞ � PðBðtÞ%xÞÞ2dx; (Equation 27)

where PðbBðtÞ%xÞ is the CDFs of the probabilistic forecasts and PðBðtÞ%xÞ is the ‘‘CDFs’’ of the observa-

tions. If the probabilistic forecasts are reduced to deterministic point forecasts (i.e. PðbBðtÞ%xÞ become

step functions), the CRPS is equivalent to the MAE. Lower value of CRPS indicates better performance

of the probabilistic forecasts.

Other metrics to assess probabilistic ensemble forecast includes but not limited to statistical consistency

(Anderson, 1996; Hamill, 2001), rank histogram (Hamill, 2001), missing rate error (MRE) (Eckel and Walters,

1998), and binned-spread skill diagram (Delle Monache et al., 2013).

Statistical consistency assesses whether the ensemble predictions are statistically indistinguishable from

the observations. To analyze the statistical consistency, the M ensemble predictions ðbBi; i = 1;.;MÞ and
the observations (B) are sorted together from lowest to highest. If the ensemble forecasts and the obser-

vations are statistically consistent, the observation is equally likely to take any of the M + 1 rank:

E½PðbBi�1 %B< bBiÞ� = 1

M+ 1
: (Equation 28)

More details of implementation of statistical consistency analysis can be found in (Eckel and Walters, 1998;

Hamill, 2001; Alessandrini et al., 2015).

Rank histogram, which is also named as verification rank histograms, analyzes the statistical consistency of

ensemble forecasts (Delle Monache et al., 2013) when compared to newly observed data. A rank histogram

is the distribution of observation ranks relative to the sorted ensemble predictions over a large validation

dataset. Ensemble predictions with statistical consistency have observations equally distributed in the rank

histogram with a flat distributed rank probability (1/(M+1)) (Hamill, 2001; Alessandrini et al., 2015). Any pre-

diction bias will cause a sloped rank histogram. Ensemble predictions that are over-dispersive have a

convex rank histogram while ensemble predictions that are under-dispersive have a concave rank histo-

gram (Eckel andWalters, 1998). MRE is frequently calculated for a rank histogram to provide insights about

the performance of probabilistic forecasts (Eckel and Walters, 1998). The fraction of observations, which is

lower/higher than the lowest/highest ranked prediction, is derived as the missing rate error:

MRE = f1 + fM � 2

M+ 1
; (Equation 29)

where f1 and fM are the relative frequencies of the first and the last bins in the histogram. Positive and nega-

tive missing rate errors usually indicate under-dispersion and over-dispersion in the ensemble predictions,

respectively (Alessandrini et al., 2015).

The binned-spread skill diagram compares the standard error (e.g. RMSE) of ensemble mean over binned

ensemble spread and therefore is able to assess the statistical consistency at a particular forecast lead time

(Junk et al., 2015). The 1:1 diagonal line of the diagram represents the perfect spread-skill line and good

statistical consistency. Instances above or below the diagonal line indicate underspread or overspread,

respectively. More details about the binned-spread skill diagram can be found in (Van den Dool, 1989;

Wang and Bishop, 2003).

INTRA-HOUR SOLAR FORECASTING METHODS FOR SINGLE LOCATION

In this section, we review solar forecasting methods, such as data-driven methods, which include regres-

sive, conventional stochastic learning (SL), and deep learning methods, local sensing methods, and hybrid

methods. Longer horizon forecasting methods (e.g. intra-day or day-ahead forecasting methods) that are

potentially applicable to intra-hour horizon forecasts are also presented in this section.

Data-driven methods

Data-driven forecasting methods derive mathematical relationships between the considered variables

(inputs/observations) and the dependent variables (targets/predictions) using training data. In general,
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data-driven methods have several advantages such as minimum prior assumptions, fault tolerance, and

applicability of both linear and nonlinear modelings, and high speed performance. Therefore, data-driven

methods are popular approaches for intra-hour solar forecasting applications (Mellit and Kalogirou, 2008;

Inman et al., 2013). Nevertheless, time series of irradiance have very different characteristics under different

weather conditions. As a result, data used to train, optimize, and evaluate data-driven models must cover a

wide range that include all possible seasonal and meteorological conditions. Detailed algorithms of the

subsequent data-driven methods are presented in Section S2.

Forecasts based on regressive methods

Solar forecasts can be treated as time-series forecasts. Therefore, ARMA and ARIMA have been used for

solar forecasting applications since the 1970s (Boileau, 1979). Brinkworth (Brinkworth, 1977) uses an

ARMA algorithm to predict irradiance in order to predict solar thermal outputs. In late 1980s, ARMAmodels

have also been employed to estimate hourly irradiance for optimal control of buildings (Benard et al., 1985;

Hokoi et al., 1991). Later, Al-Awahdi et al. (Al-Awadhi and El-Nashar, 2002) develop an ARMA model that

intakes a bi-linear time series to predict daily averaged irradiance in Kuwait. Moreno-Muñoz et al. (Moreno-

Muñoz et al., 2008) use multiplicative ARMA models to forecast GHI in southern Spain for a four-year

period. Craggs et al. (Craggs et al., 2000) use ARIMA models to forecast 10-min, 20-min, 30-min and

1-hour averaged solar irradiance. Reikard (Reikard, 2009) compares ARIMA model with several other

models in predicting the GHI for forecasting horizons of 5-min, 15-min, 30-min, and 60-min using multiple

data sets. Reikard (Reikard, 2009) concludes that the ARIMA model with time-varying coefficients yields

the highest accuracy. More examples of regressive solar forecasting models are discussed by Inman

et al. (Inman et al., 2013).

Forecasts using conventional SL methods

SL methods have several benefits such as fault tolerance to noise, capabilities in solving nonlinear prob-

lems, minimum requirement of prior assumptions, and less computational effort when applied in opera-

tion. Therefore, SL methods are popularly used in solar resourcing and forecasting studies, particularly

for short-term forecasts that require high temporal resolution and fast processing speed.

Originally used for pattern classification, kNN is a representative SL method that is applied to classify and

to predict time series (Yakowitz, 1987) and is later introduced to forecast solar irradiance (Paoli et al., 2010;

Pedro and Coimbra, 2012, 2015). For example, Pedro and Coimbra propose a kNN-based forecasting

model to predict both intra-hour GHI and DNI. Chu et al. (Chu and Coimbra, 2017) develop a kNN-based

model to predict PDF for intra-hour DNI. More details about kNN-based solar forecasts can be found in

(Pedro et al., 2018).

Similarly, as another popular SL method, SVM/SVR has been employed in the fields of renewable modeling

and forecasting (Foley et al., 2012; Zeng and Qiao, 2013; Zagouras et al., 2015b). Chu et al. (Chu et al.,

2015a) use SVM to categorize the sky condition into low or high irradiance variability categories. Then 5

to 20 min ahead DNI predictions are generated using an ANN that is trained with meteorological data

collected in the same sky condition category. Zeng and Qiao (Zeng and Qiao, 2013) propose a SVM-based

model for short-term solar-power forecasts using historical atmospheric transmissivity and other meteoro-

logical data as inputs. This proposed model shows higher accuracy than an AR model and a RBF neural

network model. Zagouras et al. (Zagouras et al., 2015b) employ SVR to forecast 1-hour averaged GHI

1- to 3-hour ahead for 7 different locations and conclude that SVR achieves competitive performance in

terms of RMSE when comparing with linear model and ANN model. More details about applications

and implementations of SVM and SVR can be found in (Vapnik, 2000; Huang et al., 2002; Melgani and Bruz-

zone, 2004; Chang and Lin, 2011).

Forecasts based on deep learning methods

Deep learning-based models (ANN) are commonly used for intra-hour solar forecasts (Anagnostos et al.,

2019) due to its ability for complex non-linear mappings (Inman et al., 2013). Multilayer perceptron (MLP)

is one of the most established ANN structures and has been introduced to forecast intra-hour GHI, DNI,

and power generation. Details of MLP-based solar forecasts can be found in (Inman et al., 2013; Yap and

Karri, 2015; Yang et al., 2018; Pedro et al., 2018). Tuning the hyper-parameters of MLP is essential to opti-

mize the forecasting performance. Therefore, genetic algorithm (GA) has been introduced to optimizeMLP

forecasting models. GA has proven to be a rapid convergence method for many applications and works
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well in identifying a solution that is close to the global-optimal solution in the searching space (Mellit and

Kalogirou, 2008). Examples of GA optimization in solar forecasting can be found in (Koutroulis et al., 2006;

Crispim et al., 2008; Marquez and Coimbra, 2011; Voyant et al., 2012; Chu et al., 2015c).

Along with the developing progress in deep learning methods, recurrent neural networks (RNNs), such as

LSTM and GRU have been employed to analyze and predict the sequence/time series of irradiance. For

example, LSTM has been used to forecast short term GHI or solar integrated load in (Yu et al., 2019; Sethi

and Kleissl, 2020), and the results indicate that the LSTM achieves the best performance in term of accuracy

when comparing to reference models such as ARIMA, multivariate linear regression models, and simple

RNN. The LSTM has also been applied to forecast hourly day-ahead solar irradiance (Qing and Niu,

2018), and the testing result on 1-year data suggests that the LSTM achieves a relative improvement of

42.9% in terms of the RMSE when compared with a back propagation neural network. In (Abdel-Nasser

and Mahmoud, 2019), several LSTM architectures are trained to forecast PV power production using histor-

ical data, and the result suggested that LSTM is able to accurately learn the complex patterns in PV power

time series. Furthermore, deep RNN, which represents more complex functions than one hidden layer of

LSTM neurons, has been used to forecast solar irradiance in (Alzahrani et al., 2017). Although LSTMs

have shown competitive accuracy in solar forecasts, their deployments suffer from long training time.

Therefore, to reduce the training time while ensuring high accuracy, the GRU has been applied for short

term PV generation forecasts (Wang et al., 2018b). Similarly, multivariate GRU models (Wang et al.,

2018b; Wojtkiewicz et al., 2019; Hosseini et al., 2020) have been proposed to forecast solar irradiance or

power production. Note that further improvement of forecast accuracy requires the addition of exogenous

weather variables and spatial cloud cover information, which could be extracted from sky imaging systems

using convolutional neural networks (see Sections local-sensing methods and hybrid methods).

The aforementioned data-driven methods (regressive, conventional SL, and deep learning methods) have

a broader coverage in terms of both temporal and spatial resolutions than other methods because data-

driven methods rely on the time series of measured data and their coverage is only limited by the sampling

frequency of data acquisition (Inman et al., 2013). In recent years, deep learning-based methods are exten-

sively studied and discussed in the literature due to their excellent performance in forecasting applications.

However, most data-driven solar forecasting methods are developed without incorporating the informa-

tion of cloud cover as exogenous inputs to improve their robustness and accuracy (Chu et al., 2014). For

intra-hour horizons, cloud cover is the most important factor to cause high-frequency irradiance ramps.

For example, cloud cover could decrease the ground level DNI by hundreds of Wm�2 in less than one min-

ute. Without cloud cover information, the data-driven methods usually predict ramps that have a time in-

terval lag when compared with the actual ramps (Chu et al., 2015b). Since accurate prediction of solar

ramps is essential to solar integration applications, local-sensing methods are proposed to capture cloud

cover information, in order to enhance the accuracy in predicting solar ramps.
Local-sensing methods

As clouds are the dominating cause of high-frequency irradiance ramps at ground level (Chu et al., 2014),

local-sensing methods are developed to extract local cloud information from sky images. The extracted

cloud features are then used to physically predict the intra-hour ground-level irradiance. The theories

and applications of local-sensing methods are reviewed in this section.

Sky imagers for local cloud cover monitoring

Both the spatial and temporal resolutions of NWP or satellite-based remote-sensing techniques are not

adequate for localized intra-hour solar forecasting applications (Inman et al., 2013). Alternatively, ground-

based sky imaging techniques are proposed to detect cloud properties and cloud movement to serve as

exogenous inputs for forecasting models. Compared with remote-sensing techniques, ground-based sky im-

agers capture images of hemispherical sky with much higher temporal frequency and spatial resolution. Sky

imaging techniques provide full-color sky images for cloud cover studies and are useful not only for intra-hour

solar forecasts but also for meteorological, atmospheric, environmental, and agricultural research. The fore-

cast horizons for sky imagers are constrained by its field of view: typically less than a few kilometers depending

on cloud base height. Therefore, the maximum forecast horizon of sky-imager-based solar forecasts is usually

limited to 20 to 30 min (depending on the movement speed of clouds). In addition, built-in shadowband and

image glare adversely affect the accessibility of cloud information in near-Sun regions, which constraint the

minimum forecast horizon to be about 2 min (Marquez and Coimbra, 2013a).
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Figure 3. An observatory at UC San Diego equipped with a YES TSI (dashed rectangle) and Vivotek network

cameras (solid rectangles)
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Early sky imagers are developed in Marine Physical Lab of University of California San Diego (UCSD) for

cloud field assessment (Johnson et al., 1989; Shields et al., 1993). Since then, different sky imagers have

been developed and a comprehensive review of sky imagers is provided by West et al. (West et al.,

2014). Generally, there are two designs of sky imagers: downward-orientated cameras with upward spher-

ical mirrors (Pfister et al., 2003; Long et al., 2006) and upward-orientated cameras with fish-eye lens (Souza-

Echer et al., 2006; Seiz et al., 2007; Cazorla et al., 2008). Most sky imagers provide a field view of 180� and are

equipped with shadowbands or shadowrings to protect the camera sensor from the direct solar beam. One

representative commercial sky imager is the Yankee Environmental Systems (YES) Total Sky Imager (TSI),

which is widely applied in the field of solar forecasting applications. An example deployment of YES-TSI

is shown in Figure 3.

The applications of TSIs are limited due to high capital/installation/maintenance costs, limited resolution, and

the partial blockage of full sky view by the shading systems. As a result, innovative sky imagers have been pro-

posed in recent years to overcome the limitations. Dev et al. (Dev et al., 2014) develop a whole sky imager

using a digital camera with a fish-eye lens. This camera captures both visible and near-infrared radiations

and has advantages of simplicity, lower price (US$ 2,500), and higher resolution. Cooperated with Sanyo Elec-

tric Co (Kleissl, 2013; Yang et al., 2014), UCSD developed a sky imager named ‘‘USI’’ using High-Dynamic-

Range imaging HDR techniques. With a neutral density filter (an optical depth of 6.9), the USI does not require

a shadow band. The USI is designed specifically for short-term solar forecasts and outperforms the commer-

cial TSI in terms of higher resolution, dynamic range, bit depth, less compression, climate control, system

health monitoring, and full programmability. Commercial off-the-shelf digital cameras are proposed as a

low-cost alternative for sky imaging (Kazantzidis et al., 2012). Chu et al. (Chu et al., 2014) employ Vivotek

network cameras (model FE8171V for intra-hour solar forecasts (as illustrated in Figure 3). The advantages

of these network cameras include substantially low cost (about USD $500), higher resolution, usability, easy

installation, and the absence of moving parts (e.g. shadowband). As a compromise for no shadowband,

the circumsolar region of sky images is affected by the glare from light scattering (especially during clear

periods), causing difficulties for cloud detection (see Section cloud detection techniques).

Cloud detection techniques

Images captured bymost sky imagers are recorded as red-green-blue (RGB) color images. In these images,

cloud pixels usually have higher red (R) intensity values than sky pixels (shown in Figure 4). Therefore, a
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Figure 4. Example sky images of representative weather conditions and their NRBR maps

Adapted from (Chu et al., 2015a), used with permission.
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number of automatic cloud-identification methods are using thresholding techniques. A comprehensive

review of cloud detection methods and their performance is discussed by Tapakis and Charalambides (Ta-

pakis and Charalambides, 2013). Here we review several methods which are popularly used to derive useful

cloud cover information for solar forecasts.

Fixed thresholding method (FTM). FTM calculates the ratio

RBR = R=B; (Equation 30)

or difference

RBD = R � B (Equation 31)

of red (R) intensity to blue (B) intensity for each pixel of the image and compares the ratio/difference

with a fixed threshold to determine whether the pixel is cloud or sky (Shields et al., 1993). To avoid

extreme values of RBR when pixels have very low blue intensity, normalized RBR (NRBR) is proposed (Li

et al., 2011):

NRBR = ðR�BÞ=ðR + BÞ: (Equation 32)

Example of an NRBR sky image is shown in Figure 4. The threshold of FTM can be determined empirically or

by maximizing the identification accuracy using a training set of images. FTM is easy to implement and ac-

curate for clear or overcast images, but its performance degenerates significantly when thin clouds such as

cirriform are presented in sky images (Long et al., 2006; Li et al., 2011).

Minimum cross-entropy method. To address the drawbacks of FTM, minimum cross-entropy method

(MCE) method is proposed and shows higher accuracy than the FTM in identifying cumuliform and cirriform

clouds (Yang et al., 2009). The MCE method uses an adaptive threshold that is calculated using the Otsu

algorithm (Otsu, 1979; Li and Lee, 1993). Once the threshold is calculated, pixels having RBR higher than

the threshold are identified as cloudy pixels (Li and Tam, 1998). Marquez and Coimbra (Marquez and Coim-

bra, 2013a) improve the performance of MCE method by confining the MCE threshold within an interval,
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which is estimated by maximizing the performance of cloud detection on a training set of historical sky

images.

Clear-sky library method. ForwardMie scattering or light scattered from the dome of the lens generates

image glare in the circumsolar region (see Figure 4, second row, first column), which increase the red inten-

sity of circumsolar sky pixels. As a result, image glares tend to be misclassified as clouds by FTM and MCE

methods even during cloudless periods. Since the intensity of image glare depends on solar geometry,

Ghonima et al. (Ghonima et al., 2012) first developed the clear-sky library (CSL) method. The CSL method

uses a historical database of clear sky images captured at different solar elevation angles, to remove the

geometric variation of clear sky RBRs due to image glare.

CSL is implemented in three steps:

� The RBR map of a sky image is offset by the reference CSL RBR map that corresponds to the same

elevation angle and Sun-pixel angle, resulting in a DIFFerence image: DIFF = RBR-CSL.

� An iterative algorithm is applied to derive a Haze Correction Factor (HCF) (Seiz et al., 2007; Ghonima

et al., 2012), which is used to quantify the variation of clear-sky RBR caused by aerosol:

DIFFHCF = RBR� ðCSL 3 HCFÞ: (Equation 33)

� FTM is applied to DIFFHCF to identify the cloud pixels. Chu et al. (Chu et al., 2014) suggest that MCE,

instead of FTM, applied at this stage achieves higher cloud identification accuracy for partly cloudy

periods.

For sky imagers that are noticeably affected by image glare, the circumsolar region of the sky images is

likely to be over-offset and cloud pixels are likely to be misidentified as clear even during overcast periods.

Another issue of the CSL method is that CSL requires massive computational costs and storage spaces.

Other thresholding methods. Based on the assumption that sky and cloud patterns occupy a typical

locus in the RGB space, Mantelli Neto et al. (Neto et al., 2010) use Euclidean geometric distance on

RGB color space to classify sky and cloud pixels. This method achieves a correlation of 97.9% for clouds

and 98.4% for sky when compared with a FTM established by Long et al. (Long et al., 2006). Cloud detection

methods which do not directly use RGB intensities are also proposed in literature. Souza-Echer et al.

(Souza-Echer et al., 2006) transfer the RGB into Intensity, Hue, and Saturation space (IHS) and develop a

thresholding method based on the IHS space, which simulates the object detection by human eyes.

Hybrid methods. Performance of a single cloud detection method is sensitive to cloud genres (Li et al.,

2011). Therefore, hybrid methods that integrate two or more cloud detection methods are proposed to

achieve robust performance of cloud detection under diverse meteorological conditions.

Li et al. (Li et al., 2011) propose a HYbrid Thresholding Algorithm (HYTA) that integrates FTM and MCE.

Based on the assumption that NRBR distributions of sky image can be categorized into two groups: unim-

odal and bimodal. A unimodal image is composed of either cloud or sky element (overcast or clear) and its

NRBR distribution has a single peak and a small variance. A bimodal image is composed of both cloud and

sky elements (partly cloudy) and its NRBR distribution has two or more peaks and a large variance. Exam-

ples of both unimodal and bimodal images are shown in Figure 5. HYTA calculates the standard deviations

of NRBRs to categorize the images as either unimodal or bimodal. Afterward, HYTA applies FTM to unim-

odal images and MCE to bimodal images, respectively. The HYTA achieves an overall accuracy of 88.53%

against selected manually classified images. However, this method is unable to differentiate image glare

from clouds during clear sky periods.

Chu et al. (Chu et al., 2014) propose a smart adaptive cloud identification method (SACI) integrating FTM,

MCE, and CSL. A schematic illustration of SACI is shown in Figure 6. This method first categorizes a sky im-

age as clear or cloudy using a Clear-Sky Identification Algorithm (CSIA) developed by Reno et al. (Reno
iScience 24, 103136, October 22, 2021 17



Figure 5. Examples of original images and their NRBR distribution histograms for unimodal (left column) and

bimodal (right column) groups

Adapted from (Chu et al., 2014), ª American Meteorological Society, Used with permission.

ll
OPEN ACCESS

iScience
Review
et al., 2012). The CSIA computes five criteria based on a lagged 10-min GHI time series. The five criteria are

mean GHI, max GHI, length of GHI time series, variance of GHI changes, and maximum deviation from

clear-sky gradient (more details of CSIA are discussed in (Long and Ackerman, 2000; Younes and Muneer,

2007; Reno et al., 2012)). If all the five criteria are within the preset thresholds, the present time is identified

as clear. Otherwise, the present time is identified as cloudy. Then, for images that are categorized as

cloudy, SACI uses the HYTA (Li et al., 2011) to further categorize the images as either overcast or partly

cloudy. After the categorization of images, the SACI employs FTM for overcast images, CSL with FTM (Gho-

nima et al., 2012) for clear images, and CSL with MCE (Chu et al., 2014) for partly cloudy images. SACI

achieves accuracy above 92%, 94%, and 89% when quantified using manually annotated images for clear,

overcast, and partly cloudy images, respectively.

SL method. Cloud detection by SLs (e.g. ANN, SVM, or kNN) has shown excellent performance when

applied to satellite images. They are also introduced to ground-based sky imagers (Taravat et al., 2015).

The advantages of SL-based cloud detection methods are no prior assumptions required for input-output

relationships, and high efficiency in real-time applications with minimum processing procedures (Taravat

et al., 2015). However, SL-based cloud detection methods usually need large training sets, which include

manually annotated images of diverse sky conditions, and therefore require a noticeable amount of

work and computational resources during the learning phase.

Cazorla et al. (Cazorla et al., 2008) develop a cloud detection method using MLP. This method analyzes

each image pixel using a 9-pixel window centering around it and categorizes the analyzed pixels into

sky, thin cloud, and opaque cloud using 18 potential inputs extracted from the 9-pixel window. The 18 po-

tential inputs include mean and variance value for the pixel and its neighbors in RGB channels, RBR ratios,

and gray scales. The selection of inputs and parameters for the MLP is optimized using GA. This method

achieves accuracy above 85% for clear and opaque cloud pixels and 61% for thin cloud pixels.

Kazantzidis et al. (Kazantzidis et al., 2012) develop a cloud detection method using k-nearest neighbor

(kNN) algorithm based on the work of Heinle et al. (Heinle et al., 2010). The kNN features include statistical

color, textural features, solar zenith angle, cloud coverage, visible fraction of solar disk, and the existence of

raindrops. This kNN method is tested on seven cloud types (cumulus, cirrus and cirrostratus, cirrocumulus

and altocumulus, clear sky, stratocumulus, stratus and altostratus, cumulonimbus and nimbostratus) and

achieves accuracy between 78% and 96%.
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Figure 6. Schematic illustration of SACI

Adapted from (Chu et al., 2014), ª American Meteorological Society, Used with permission.
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Support vector machine (SVM) is mostly used to detect clouds for remote-sensing techniques, such as

moderate-resolution imaging spectroradiometer (MODIS). SVM has also been introduced to identify

clouds for local-sensing techniques and achieves satisfied performance. Cloud detections using SVM

with sky imagers are discussed in detail by Addesso et al. (Addesso et al., 2012) and Taravat et al. (Taravat

et al., 2015).

Sky image features as exogenous forecasting inputs

Cloud detection methods usually require a significant amount of processing time, particular for high-res-

olution cameras. The processing time is not an issue in the phase of model training using historical data.

However, the cloud detection algorithm will significantly increase the latency of forecasts when applied

in the real-time forecasts (Chu et al., 2015a). In addition, most of the cloud detection methods available

in literature detect clouds based on RBR or NRBR information. Therefore, instead of employing cloud

detection, several studies directly calculate NRBR-based features as exogenous inputs for hybrid solar

forecasting models (see hybrid methods).

Pedro and Coimbra (Pedro and Coimbra, 2015) and Chu et al. (Chu et al., 2015b) calculate three whole im-

age NRBR parameters to represent cloud cover information for a sky image, they are:

Mean

m =
1

N

XN
i = 1

NRBRi; (Equation 34)

where N is the number of pixels.

Standard deviation

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i = 1

ðNRBRi � mÞ2
vuut : (Equation 35)

and entropy

e = �
XNB

j = 1

pj log2

�
pj

�
; (Equation 36)

where pj is the relative frequency for the jth bin (out of NB evenly spaced bins). These three parameters

are used as additional features in a feature space of a kNN model in Pedro and Coimbra (Pedro and

Coimbra, 2015) and are used as exogenous inputs to an ANN model in Chu et al. (Chu et al.,
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2015b). Other image features used for intra-hour solar forecasts include the mean intensity level, the

mean gradient magnitudes of intensity, the averaged accumulated intensity of the vertical line of the

Sun as discussed by Cheng et al. (Cheng et al., 2014), and sky cover indices discussed by Marquez

et al. (Marquez et al., 2013a).

Cloud tracking for irradiance forecasts

Clouds that move to shade the power plants are more frequently associated with significant power ramps,

particularly for CSP applications. Therefore, deriving the vector of cloud movement is important to solar

forecasts. Various automatic cloud motion detection methods are proposed to generate the motion vector

(direction and speed), for the derivation of cloud shadowmovement on the ground. Most of thesemethods

are developed based on computer vision and flow visualization techniques. For example: cross correlation

(X-corr), scale invariant feature transform (SIFT), optical flow (OF), and particle image velocimetry (PIV).

These automatic cloud motion detection methods analyze consecutive images to derive a displacement

vector, and a representative cloud velocity is calculated by dividing the displacement vector by the time

internal between the two consecutive images.

X-corr is a simple and easy to implement method. It compares two consecutive images and derives the

displacement that minimizes the matching errors using minimum quadratic difference (MQD) method

(Gui and Merzkirch, 1996; Thompson and Shure, 1995).

SIFT is a computer vision method that extracts key points with specific features from a reference image

(Lowe, 1999; Lourenço et al., 2012). The specific features are assumed to be invariant to scaling, rotation

or image translation. Then, a different image is analyzed to extract key points with the same features.

The displacements between matched key points are calculated and clustered as a representative

displacement.

OF is developed based on the assumption that the brightness (I) of an image pixel remains constant after

displacing from one location ðx; yÞ at time t to another location ðx +Dx; y +DyÞ at time t +Dt (Horn and

Schunck, 1981; Sun et al., 2010). Therefore, the displacement vector can be obtained by solving the equa-

tion Iðx; y; tÞ= Iðx + uDt; y + vDt; t +DtÞ with additional constraints derived using correlation method,

gradient method, or regression method. Examples of OF for cloud velocity derivation can be found in

(Nonnenmacher and Coimbra, 2014; Wu, 1995).

PIV partitions each of the two consecutive images into interrogation windows (Adrian and Westerweel,

2011). The cloud displacements of each interrogation window pair is then derived through analyzing their

correlation using the minimum quadratic difference method (Mori and Chang, 2003). The displacements of

all interrogation windows are clustered using the k-meansmethod (Marquez and Coimbra, 2013a) to obtain

a representative cloud displacement.

Once the cloud motion vector is obtained, clouds that are more relevant to solar forecasts can be

identified. Then their features are extracted to physically predict the solar irradiance using cloud-to-

irradiance models. Most cloud-to-irradiance models for sky imagers are based on similar methods

as satellite-based models, which are discussed in detail by Inman et al. (Inman et al., 2013). Here

we present two cloud-to-irradiance methods that are developed specifically for local sky imaging

systems.

Chow et al. and Urquhart et al. (Chow et al., 2011; Urquhart et al., 2013) develop an GHI forecasting method

based on TSIs. After cloud detection (Johnson et al., 1991), a georeferenced map of cloud in an image co-

ordinate system is obtained and a pseudo-Cartesian transform (Allmen and Kegelmeyer, 1997) is applied to

map cloud positions according to a planar grid (Chow et al., 2011). Representative cloud motion vector is

obtained using the X-corr method. Then, the motion vector is used to advance the cloud map forward to

generate a cloud map. To forecast irradiance for any ground location, a ray is traced from the location to

the Sun and the intersection with the cloud map is determined (Figure 7). Then, the cloud coverage of the

intersected point is obtained and the irradiance level of the point location can be predicted using historical

observations. This process can be repeated to construct a shadowmap on the ground. The area-weighted

average of solar power is empirically estimated using the shadowmap and the lagged measurement of

cloud transmittance. Owing to the limited view of TSI, the maximum forecast horizon of this method is
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Figure 7. Illustration of the ray tracing procedure to construct a georeferenced mapping of cloud shadows
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30 min (Urquhart et al., 2012). More details about this method can be found in (Urquhart et al., 2012) and

(Urquhart et al., 2013).

Marquez and Coimbra (Marquez and Coimbra, 2013a) propose a grid-cloud-fraction method for intra-hour

DNI forecasts. This method can be summarized in five steps:

� First, sky images are projected onto a flat rectangular grid to remove the geometric distortion.

� Second, consecutive image pairs are used to compute the representative cloud motion vector using

PIV method (Mori and Chang, 2003).

� Third, cloud detection method is applied to produce binary cloud maps.

� Fourth, a set of grid elements is placed in the reverse direction of the cloud movement from the Sun

position on the binary cloud map (see Figure 8).

� Eventually, the fraction of pixels identified as clouds in each grid element i is computed as cloud

indices CIi. The resulting CIi time series can then be used to forecast DNI using a straightforward

linear relation (Marquez and Coimbra, 2013a):

bBiðt + FHÞ = Bclrðt + FHÞ ð1�CIiÞ Po (Equation 37)

where bBiðt +FHÞ is the predicted DNI for the forecast horizon using the cloud index CIi. Bclr is the clear-sky

DNI from a clear-sky model. Po is the percentage of DNI decrease caused by clouds. For instance, opaque

clouds that block DNI completely have Po equals 0.

Sensor networks for solar ramp estimation

Methods based on spatially distributed networks of high-frequency sensors are proposed to overcome the

limitations of both maximum and minimum forecast horizons imposed on local-imaging methods. Distrib-

uted sensor network estimates cloud motions and imminent ramps through analyzing the adjacent and

correlated irradiance measurements. Other advantages of sensor networks include relatively low costs

and input-output relationships that avoid the computational costs of cloud detection (Lonij et al., 2013).

However, the cloud tracking of sensor-network methods are usually based on cross-correlation analysis,

whose accuracy and stability in detecting cloud velocity are degraded during the periods with low irradi-

ance variability (e.g. clear or overcast sky) (Bosch et al., 2013).

Bosch et al. (Bosch et al., 2013) derive cloud velocity using a network of eight Licor photodiode pyranom-

eters (illustrated in Figure 9). The cloud motion direction is obtained as the direction of the pair of sensors

that achieves highest cross-correlation factors in irradiance measurements. Once the most correlated

sensor pair is identified, the cloud velocity is calculated as:
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Figure 8. Illustration of the grid-cloud-fraction-method

(A) The original image.

(B) The projected image in a rectangular grid.

(C) The velocity vectors computed by the PIV algorithm.

(D) The set of grid elements placed on the cloud map, where white pixels represent cloud, gray pixels represent sky, and

black pixels are obstacles that are excluded. Adapted from (Chu et al., 2014), ª American Meteorological Society, Used

with permission.
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v =
d

tL
; (Equation 38)

where d is the distance between the sensor pair, and tL is the lagged time that is calculated using maximi-

zation of cross-correlations between time series of measurements from the most-correlated sensor pair.

Bosch et al. propose a simplified sensor network based on the assumption of linear cloud edge using only

three pyranometers located at the origin, 0�, and 90�, which is shown in Figure 9. Both the origin and the

simplified sensor network are tested at the UCSD Solar Energy Test Bed against data from Integrated

Global Radiosonde Archive (Durre et al., 2006) and achieve robust performance that can be considered

as ground truth during periods with high irradiance variability.

Based on the assumption that cloud speed is persistent within the forecast horizon, Lipperheide et al. (Lip-

perheide et al., 2015) employ a sensor network to forecast power from a centralized 48 MW photovoltaic

power plant with a forecast horizon less than 2 min. Instead of pyranometers or other radiometers, this

method uses endogenous power measurements from 70 inverters which are spatially distributed. Cloud

velocity is derived using the endogenous power measurements and the derived velocity is used to estimate

the propagation of cloud shadow and possible ramps of power generation. Power forecasts based on this

method significantly outperform the reference persistence forecasts and achieve forecast skills around 10%

for 1-min forecast horizon.

Sensor networks are also applicable to longer horizon forecasts. Lorenzo et al. (Lorenzo et al., 2014) build a

network of 19 irradiance sensors to generate retrospective forecasts. This sensor network forecast pro-

duces predictions for GHI every minute at a given location for 1- to 28-min forecast horizons. Tested on

26 days in April 2014, the network forecast outperforms reference persistence forecast in terms of both
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Figure 9. A network of sensors with a defined radius

Adapted from (Bosch et al., 2013).
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MAE and RMSE. Lonij et al. (Lonij et al., 2013) presents a method to predict power outputs from PV systems

using power measurements from a distributed network of 80 residential PV systems over a 50km 3 50km

area. This network forecasting method creates a framework to model station-pair correlations of power

ramps caused by clouds. The network method is applicable for time horizons ranging from 30-s to

6-hour and outperforms the persistence forecast for horizons from 30-min to 90-min.
Hybrid methods

Date-driven methods and local-sensing methods are major approaches for intra-hour solar forecasts. How-

ever, both methods have specific limitations. For example, forecasting models based on data-driven

methods are usually constructed without considering spatial-temporal information of clouds, which are

one of the most important factors associated with short-term solar ramps at ground levels. On the other

hand, local-sensing models that incorporate sky cover information may not successfully capture the non-

linearity of the radiative process to enhance the accuracy of forecasts. For example, local-sensing models

without data-driven based reforecasting modules may suffer from negative forecast skills (Chu et al.,

2015c). Therefore, hybrid models, which usually integrate two or more methods, have been proposed to

combine the advantages of different methods (Marquez et al., 2013a, b). In this section, we review the

recent developments of hybrid methods for intra-hour solar forecasts.

Integrated solar forecasting models

Hybrid models typically use cloud-cover information extracted from local-sensing methods as exogenous

inputs to data-driven methods. For instance, ARMAX and ARIMAX with numerical cloud information as

exogenous inputs, which are obtained using local-sensing techniques. Chaabene and Ammar (Chaabene

and Ben Ammar, 2008) develop a 5-min ahead forecast based on ARMAX and Kalman filtering using mete-

orological parameters as exogenous inputs. Voyant et al. (Voyant et al., 2012) use an ARMA that considers

outputs from NWPs as exogenous inputs to predict hourly averaged GHI. Lu et al. (Lu et al., 2015) use state

parameters from NWP models as exogenous inputs to an ARMAX model, which effectively reduces the

error of the baseline models by 30%. Gordon (Gordon, 2009) describes a hybrid model that uses ARIMAX

to estimate the forecast residuals and then employs a neural network to process the residuals. Validated on

6 independent data sets for forecast horizons ranging from 5 min to several hours, the hybrid model is

competitive with other evaluated models (Regression, ANN, ARIMA, Transfer function, etc.), particularly

for forecast horizons less than 30 min.

More recently, hybrid models that integrate local-sensing techniques with SL methods have been developed

and validated in real-time operations. Marquez et al. (Marquez et al., 2013a) use cloud indices obtained from

an TSI and cloud indices derived from infrared radiometric measurements as inputs to an ANNmodel in order

to improve forecasting accuracy of hourly GHI. Chu et al. (Chu et al., 2015c) use GA-optimized ANN as a
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model-output-statistic (MOS) tool to improve forecast accuracy of three baseline models: ARMA, kNN, and a

local-sensing-based physical model. The ANN-physical model achieves the highest forecast skills above 15%

over the reference persistence model for 5-, 10-, and 15-min horizons. Chu et al. (Chu et al., 2014) develop

another hybrid model based on ANNs and off-the-shelf fish-eye cameras. This hybrid model uses a smart

adaptive cloud detection (SACI) system (see cloud detection techniques), to obtain numerical cloud cover in-

formation (Marquez and Coimbra, 2013a) as inputs to the ANN. Validation test shows that the ANNwith SACI

achieves forecast skills 3%–7%higher than the ANNwith only endogenous inputs. Chu et al. (Chu et al., 2015b)

deploy this hybrid model to predict 1 min average GHI for a 10-min horizon in real time and achieve forecast

skills above 10% over the persistence forecasting model.

Pedro and Coimbra (Pedro and Coimbra, 2015) develop a kNN-base hybrid model with a feature space

consisting of both lagged irradiance measurements and sky imaging features. Pedro and Coimbra

conclude that including sky images features as exogenous inputs improves the forecast skill by around

5%. The overall forecast skills of this hybrid model are 9%–25% for GHI and 12%–31% for DNI. The predic-

tion intervals are provided by this method with high PICP (�90% for GHI and�85% for DNI) and low PINAW

(�8% for GHI and �17% for DNI).

Multilayer-adaptive models

The variability of irradiance varies substantially under different meteorological conditions and can be

generally divided into two categories (Chu et al., 2013): the low variability period (lv), which usually associ-

ates with clear or overcast sky conditions, and the high variability period (hv), which usually associates with

partly cloudy sky conditions. Hybrid forecasting models with data-driven components mostly require a

learning process, in which the model parameters are fitted to the training data. A model trained using

data collected during clear periods is usually sub-optimal for solar forecasts under partly cloudy periods.

Therefore, an additional layer of algorithm can be added to first classify the current variability level and then

adaptively apply a more appropriate forecasting scheme.

Chu et al. (Chu et al., 2013) use the cloud coverage indices CIi, which are extracted from TSI images using

the grid-cloud-fraction method (Marquez and Coimbra, 2013a), to divide the weather conditions into two

subsets: lv and hv. The structure of this multilayer-hybrid model is:

bBðt + DTÞ =
�ModellvðtÞ if

X
i

CIi = 0

ModelhvðtÞ otherwise
(Equation 39)

where Modellv is an ANN model trained using lv data and Modelhv is another ANN model trained using hv

data. Equation (39) is a piecewise function where cloud cover indices determine which forecasting model

should be used: when no clouds presents and the sum of all CIi is zero, Modellv is applied, otherwise

Modelhv is applied. This multilayer hybrid model achieves statistically robust forecast skills of more than

20% when compared with the persistence model.

Chu et al. (Chu et al., 2015a) develop another multilayer-hybrid model to provide intra-hour forecasts for one-

minute averaged DNI. A schematic illustration of this method is shown in Figure 10. A support vector machine

is firstly used to classify the time series of DNI into either low variability period (lv) or high variability period (hv).

Then predictions are generated by ANNlv or ANNhv that are trained with data collected in lv and hv periods,

respectively. This hybrid model is deployed in real-time scenarios and significantly outperforms the reference

persistence model achieving a forecast skills above 10% for horizon between 5- to 20-min. This multilayer-

hybrid model is also capable of providing prediction intervals (PIs) that achieve PICP higher than the 90%

nominal confidence interval for all sky conditions. Themethod to generate the PIs is presented in probabilistic

forecasts. Nie et al. (Nie et al., 2020) have proposed a two-stage classification-prediction framework to predict

PV power output from sky images. This multilayer method first classifies sky conditions based on input images

captured by ground based cameras, and then uses specific CNN based submodels to predict PV output

based on the image categories. When evaluated with 1-year of data collected at Stanford University, a phys-

ics-based non-parametric classifier is recommended to be employed to classify sky conditions.

Deep learning based end-to-end hybrid methods

The aforementioned hybrid methods usually employ multiple sub-models to separately perform feature

extractions and time series predictions, particularly for models that consider cloud cover information.
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Figure 10. The schematic illustration of the Multilayer-hybrid method

A layer of SVM classifies the current weather condition into either lv or hv periods, and then specific ANN schemes are

adaptively applied to forecast DNI.
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Consequently, errors are accumulated along the classification and training process. Moreover, these sub-

models are mostly manually crafted, which will significantly increase the cost of model development,

deployment, and the generalization to new scenarios. Therefore, hybrid methods that integrate multiple

deep learning architectures have been proposed to realize end-to-end model estimation and inference.

Although these methods have not been widely applied in the domain of intra-hour solar forecasts, they

are expected to have great potential to improve the performance of intra-hour forecasts. Therefore,

end-to-end hybrid forecasting methods for longer horizons are reviewed here with potential application

to shorter forecast horizons.

Gao et al. (Gao et al., 2020) proposes a CEEMDAN–CNN–LSTM model to forecast hourly irradiance. This

model first decomposes historical data into a set of constitutive series and extracts data features. Then, a

CNN is used to analyze the features and a LSTM is used to predict the time series of solar irradiance. Vali-

dated using four datasets, this model exhibits robust performance on different meteorological types. Zang

et al. (Zang et al., 2020) proposes a hybrid CNN-LSTM model to forecast short-term GHI. This model first

applies a CNN to extract spatial features from meteorological parameters, then applies a LSTM to extract

temporal features from historical GHI time-series, and eventually merge both spatial and temporal features

together to forecast GHI. This model has been validated on data collected from 34 locations spread across

three different climate zones, and the results suggest that the proposed model outperforms all reference

models that employ CNN or LSTM. Other works that integrate CNN and RNN to forecast PV generation or

meteorological parameters can be found in (Lee et al., 2018; Wang et al., 2019; Tosun et al., 2020; Suresh

et al., 2020). However, the above models do not apply sky imaging system to investigate the impact of

cloud cover.

To incorporate cloud information based on sky images, Zhang et al. (Zhang et al., 2018a) proposes a deep

photovoltaic nowcasting model that uses both historical photovoltaic power values and sky images as in-

puts. This model achieves a 21% RMSE skill score over the reference persistence model. Similarly, Sun et al.

(Sun et al., 2018) uses convolutional neural networks to prediction PV output from video streams. Later,

Venugopal et al. (Venugopal et al., 2019) proposed a two-step autoregression-CNNmodel, which uses his-

torical PV power output and ground-based sky images as inputs, achieving a forecast skill of 17.1% relative

to a reference smart persistence model. To consider the temporal information of cloud cover, Zhao et al.

(Zhao et al., 2019) propose a deep-learning based hybrid model, which employs a 3D-CNN to analyze

consecutive sky images and extract cloud features with temporal information. The extracted features, as

well as other meteorological data are then analyzed by an MLP to forecast 10-min DNI, achieving a forecast

skill of 17.06%. Kong et al. (Kong et al., 2020) investigates both static sky image units and dynamic sky image

stream and proposes a hybrid sky image-based forecasting model that outperforms a reference model

without image inputs by 32.8% during ramp events. To tackle the issue of imbalanced sky images data

set, resampling and data augmentation methods have been proposed for end-to-end hybrid models

(Nie et al., 2021). In summary, deep learning-based end-to-end hybrid methods are proven to significantly

improve the accuracy, robustness, and cost-efficiency of solar forecasts for different forecasting spectrum.
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APPLICATION ORIENTATED FORECASTING METHODS

Most solar forecasting methods provide point or time-average predictions for irradiance or power gener-

ations. In practice, point or time-average forecasts are sometimes associated with inherent and irreducible

forecasting errors regardless of the data processing, training methods, and model mechanisms (Carney

et al., 1999; Khosravi et al., 2013):

bf ðtÞ = f ðtÞ+ eðtÞ; (Equation 40)

where bf ðtÞ represents the forecast variable/target at time t, f ðtÞ represents the true regression, and εðtÞ is
the unbiased noise associated with f ðtÞ. To quantify the uncertainty associated with the predictions, pre-

diction intervals (PIs) or PDF forecasts are frequently used. For grid operator’s decision-making, probabi-

listic forecasts convey more useful information than point predictions (Pinson et al., 2007; Bracale et al.,

2013). Several methods for probabilistic forecasts are reviewed in probabilistic forecasts.

In addition to providing predictions for a single location, operators of large centralized solar installations

need to understand the generation profiles of power plants, which may cover areas of several kilometer

squares. Utility and grid operators need to forecast solar generations across very large areas (e.g. cities)

to estimate the amount of underlying demand and the penetration of distributed solar energy (West

et al., 2014). Consequently, spatial information of solar irradiance forecasts is essential in planning, inte-

grating, regulating, and managing solar-power generations at the grid level. A number of monitoring sta-

tions over the power grid areas are required to provide the spatial forecasts (Yang et al., 2013). Since the

number of monitoring stations is generally limited and the distribution of sensors is usually irregular, geo-

statistics techniques (see spatial forecasts) are employed to estimate the solar irradiance field and to inter-

polate irradiance levels for locations without monitoring stations.
Probabilistic forecasts

Empirical methods

Empirical methods can be employed to generate prediction intervals (PIs). Sky conditions (e.g. clear, over-

cast, partly cloudy) usually persist from tens of minutes to days, and forecast errors in terms of statistical

metrics usually highly depend on sky conditions (Marquez and Coimbra, 2013b). Therefore, based on

the assumption that forecast uncertainty remains constant within the forecast horizon under similar weather

conditions, prediction intervals can be estimated using the most recent forecast errors and a specified

probability distribution function (PDF) (Chu et al., 2015a).

For example, if the forecast errors are assumed to be Gaussian distributed, the standard deviation of a

point prediction is estimated using the lagged forecast errors:

sðt + FHÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i = 0

ðbIðt � iDtÞ � Iðt � iDtÞÞ2;
vuut (Equation 41)

where Dt is a specified time interval, which is usually equal to the inverse of the forecast frequency,M is the

number of instances considered in the lagged period, bI and I are the predictions and the measurements,

respectively.

With the calculated s, the PI with a confidence level of ð1�aÞ can be generated for the point prediction

using the critical value z1�0:5a from the table of standard normal distribution:

bIðtÞGz1�0:5asðtÞ: (Equation 42)

The assumptions and principles of this uncertainty-persist method are similar to the persistence model

discussed in persistence forecast and forecast skill, and therefore can be used as a reference model to

benchmark the performance of PIs from other advanced models. The uncertainty-persist method achieves

excellent performance under low variability period (e.g. clear period), but the performance degenerates

considerably for high variability period.

Pedro and Coimbra (Pedro and Coimbra, 2015) develop a non-parametric empirical model using k-nearest-

neighbor (kNN) techniques (discussed in Section S2.2.1) to construct PI. Once the k nearest neighbors are

identified, their individual predictions will be summed with weights to provide a point prediction. In
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addition to the point prediction, the maximum and minimum individual predictions are defined as the up-

per and lower bounds of the kNN PI, respectively. The kNN PIs do not have specified confidence intervals or

underlying PDF. One year of data is used to train, optimize, and test the kNN model. The kNN PIs show

overall PICP of 90% for GHI and 85% for DNI and overall PINAW of 8% for GHI and 17% for DNI for forecast

horizons ranging from 5-min up to 30-min.

Bootstrap methods

In addition to empirical methods, probabilistic forecasting methods can be developed based on SL-based

methods. The forecast uncertainty can be estimated through statistical learning using historical measure-

ments. Several methods are discussed in literature such as the delta techniques (Chryssolouris et al., 1996;

Hwang and Ding, 1997; Lu and Viljanen, 2009) and the Bayesian methods (Mackay, 1992; Bishop, 1995; Bra-

cale et al., 2013). One representative and commonly used method for renewable forecasts is the Bootstrap

method, which has been claimed as a more reliable method by (Dybowski and Roberts, 2001).

The Bootstrap method is simple and easy to implement (Heskes, 1997; Khosravi et al., 2011a). Therefore, it

is frequently used to generate PIs for ANN-based forecasting models (Carney et al., 1999; Khosravi et al.,

2013). To implement this method, a training set of historical measurements should be prepared. Then the

training set is randomly sampled with replacement to obtain N bootstrap re-sampled sets. N bootstrap

ANNs are trained using each of theseN re-sampled sets. Predictions from all bootstrap ANNs are averaged

as an ensemble prediction:

bIfðtÞ = 1

N

XN
i = 1

bIiðtÞ; (Equation 43)

where the subscript f represents the true regression part in Equation (40), bIf is the estimated true regression

term, and the uncertainty of the true regression is calculated as the variance of theN bootstrap predictions

s2
f ðtÞ =

1

N

XN
i = 1

ðbIiðtÞ � bIf ðtÞÞ2: (Equation 44)

Afterward, variance squared residuals (r) at each timestamp t can be calculated as:

r2ðtÞ = max
�ðIðtÞ � bIfðtÞÞ2 � s2

f ðtÞ;0
�
: (Equation 45)

Based on the same training set, which consists of M training instances, a new ANN is trained to model the

white noise term se by maximizing the log-likelihood of all residuals r (Heskes, 1997):

se = argmaxse
XM
i = 1

log

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
eðtiÞ

p exp

	
� r2ðtiÞ
2s2

eðtiÞ

!

; (Equation 46)

where the subscript e represents the noise term in Equation (40). The final Bootstrap-ANN prediction bII and
associated uncertainty sI are calculated using Bayesian estimation:

pðbIðtÞjsðtÞÞ = Z
pðbIðtÞjseðtÞÞpðbIf ðtÞjsfðtÞÞdðbIf ðtÞÞ: (Equation 47)

If the errors are assumed to be Gaussian distributed (Khosravi et al., 2013), the posterior prediction is bI = bIf
and the total variance is s2ðtÞ = s2f ðtÞ+ s2eðtÞ. The PIs are generated using z1�0:5a from table of critical values:

bIðtÞGz1�0:5asðtÞ: (Equation 48)

The Bootstrap-ANN model consists of a number of ANNs. For instance, if N is set to 200 as suggested by

Carney et al. (Carney et al., 1999), the whole forecasting scheme requires at least 201 ANNs: 200 for bIf and 1

for se. As a result, the computational cost is a major drawback of the Bootstrap-ANNmodel (Khosravi et al.,

2011a).

In order to substantially reduce the computational cost, Chu et al. (Chu et al., 2015a) simplify the Bootstrap-

ANN method by directly estimating bIðtÞ and total uncertainty sðtÞ and skipping the uncertainty estimation

for the true regression. Therefore, the simplified method consists of only 2 ANNs: 1 for bI and 1 for s. The

ANN for modeling sðtÞ is trained using the same maximum likelihood estimation method discussed in

Equation (46) by maximizing the log-likelihood of total forecast residuals:
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r2ðtiÞ = ðbIðtiÞ � IðtiÞÞ2: (Equation 49)

Quantile methods

Quantiles methods are also commonly used for probabilistic forecasts (Bremnes, 2004). The main ad-

vantages of quantiles methods include: no specified probability distributions are required and

information of arbitrary distributions can be incorporated (Bremnes, 2004). First proposed by

Koenker and Bassett Jr (Koenker and Bassett, 1978), quantiles are frequently employed in research

for wind forecasts, and a comparative study of different quantile models is discussed by Bremnes

(Bremnes, 2006).

The quantile, also named as percentile, gives a value Q associated with a percentage value q indicating

that the probability of the outcomes is q if their values are less than Q. A typical example of

quantile forecast is illustrated in Figure 11. Mathematically, quantiles are defined as the inverse of

the CDF:

Qq = F�1ðqÞ; (Equation 50)
FðY Þ = Pðy%Y Þ; (Equation 51)

where Qq is the q-th quantile for forecast variable y, and F is the CDF.

To predict Q for a target variable y, Q is assumed to be a linear function of inputs x:

Qq = bTx; (Equation 52)

where the parameter vector b is obtained by solving the minimization problem:

b = argminb

 Xn
i = 1

��
yi � bTxi

�
rq
�!

; (Equation 53)

where n is the number of training instance and rq is an indicator function:

rq =

�
q if yi>b

Txi
q� 1 otherwise:

(Equation 54)

with the derived parameter vector b, quantiles Qq can be calculated, then be paired to generate PIs.

Lower upper bound estimation method

Khosravi (Khosravi et al., 2013) develops a lower upper bound estimation (LUBE) method that directly

estimates both lower and upper bounds of PI with a defined confidence level. Based on an ANN, the

LUBE method maps the input vector to two forecast variables: the lower and upper bounds of a PI. The

LUBE ANN is trained to minimize a PI-based cost function, which is the CWC presented in metrics to

assess probabilistic forecasts. CWC considers three most important aspects of PIs, coverage probabil-

ity, width, and confidence level (1-a). The training of the LUBE ANN is an iterative process (Khosravi

et al., 2011b), and ANN parameters are adjusted to minimize the CWC using simulated annealing tech-

nique (Kirkpatrick et al., 1983). The iterative training process terminates when improvement is less than

a stopping criterion or maximum number of iterations is reached. PIs from this LUBE method are tested

using two years of data and achieve CWCs from 17% (shorter forecast horizon) to 67% (longer forecast

horizon) smaller than reference PIs from a Bootstrap ANN model.

Other methods

Recently, more advanced models have been proposed to generate probabilistic forecasts. Chu et al.

(Chu and Coimbra, 2017) develop a kNN ensemble model using lagged irradiance and image data

to forecast the PDF for intra-hour DNI. Validated using standard metrics such as Brier Skill Score

(BSS) and the continuous ranked probability score (CRPS), this model has shown superior performance

over several reference models. Several other works (Nam and Hur, 2018; Doubleday et al., 2020b)

develop probabilistic forecasting methods to predict PV generations based on the Naı̈ve Bayes

Classifier or Bayesian models. Yang et al. (Yang et al., 2020b) review and evaluate several popular prob-

abilistic solar forecasting methods using a standardized data set and suggest exogenous inputs are

useful to improve the sharpness of probabilistic predictions. More details of probabilistic forecasts

and their performance can be found in (Pedro et al., 2018; Lauret et al., 2019; Doubleday et al., 2020a).
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Figure 11. Results of quantiles forecast

(A) Illustration of a quantiles forecast in terms of 5%, 25%, 50%, 75%, 95% quantiles.

(B) Explanation of the quantiles bar, where the estimated probability of outcomes is less than the corresponding quantile

value.
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Spatial forecasts

Interpolation methods

Monitoring networks, which are applied to estimate solar irradiance maps for grid operations, require a

large number of monitoring stations, which are costly to install and maintain (Yang et al., 2013). In practice,

the complicated terrain conditions also discourage a regular distribution of the monitoring sensors. There-

fore, based on the measurements and forecasts from limited monitoring stations, interpolation techniques

can be used to estimate irradiance for regions without monitoring stations. Here, we review several widely

used interpolation methods: inverse distance weighting, trend surface, radial basis function, and splines.

Inverse distance weighting method. The simplest interpolation technique is the interpolation with in-

verse distance weighting (IDW):

bZ 0 =

PN
i = 1wiðdÞZiPN
i = 1wiðdÞ

; (Equation 55)

whereN is the size of neighborhood, which can be determined by radius or number of locations, and wi are

the weighting functions inversely depending on geographic distance d:

wðdÞ = 1

dp
; (Equation 56)

where p, which is usually set to 2, is a positive power factor that can be specified by users.

IDW interpolation suffers from a spatial bias if the sample data points are not uniformly distributed in the

investigated area. A portion of the sample data points are distributed like a cluster, and the values of these

highly adjoined data points are likely to be highly correlated. Consequently, the highly correlated portion

provides redundant information resulting in a spatial bias of IDW interpolation. Therefore, anisotropy

correction can be applied using a correction factor to down-weight clustered data points. The correction

factor can be calculated using the relative angle of observed neighboring locations to the specified loca-

tion (Tomczak, 1998).

Trend surface method. Trend surface interpolation uses a model to statistically fit the values of

observed locations. For example, the interpolation model that uses second order polynomial fit is

expressed as:

Z0 = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy; (Equation 57)

where ai are coefficients that can be estimated using common regression methods such as least square

estimation (Freedman, 2009).
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Radial basis method. The radial basis interpolation is mathematically expressed as:

Z0 =
Xn
i = 1

wifðjx0 � xijÞ; (Equation 58)

where jx0 �xi j represent the distance between the unknown location x0 and the observed location xi , wi are

the normalized weights, which should satisfy

Zj =
Xn
i = 1

wif
���xj � xi

���; (Equation 59)

where Zj is the value of the j-th observed location and fð ,Þ is a radial basis function, which can be linear:

fðdÞ = d; (Equation 60)

thin-plate spline

fðdÞ = d2lnðdÞ; (Equation 61)

Gaussian.

fðdÞ = e�ad2
; (Equation 62)

or multi-quadratic

fðdÞ =
�
d2 + c2

�0:5
; (Equation 63)

where a and c are positive constants specified by users.

Spline method. Splines are named from the drafting tools, such as a flexible ruler, which generate

smooth curves through several points. Spline interpolation uses a set of joined polynomial functions to

generate a smooth curve that passes through the observed locations (Burrows et al., 1994). Similar to

one-dimensional cubic spline interpolation (McKinley and Levine, 1998), the generalized function of the

thin plate spline interpolation for 2-D grids is expressed as (Späth, 1974):

z = f ðx; yÞ=
Xm
i = 0

Xm
j = 0

aijxiyj +
Xn
i =1

wiUðrÞ; (Equation 64)

where x and y are the location coordinates, m is the order of the spline function (usually set to 1), n is the

number of known locations, U is a function of distance r = kðx; yÞ�ðxi ; yiÞk between the known location i and

the investigate location:

UðrÞ = r2logr ; (Equation 65)

and the weights wi shall satisfy: Xn
i = 1

wi = 0; (Equation 66)

Xn Xn

i = 1

wixi =
i =1

wiyi = 0; (Equation 67)

To obtain the spline curve, the following objective function (the bending energy) needs to be minimized

(Donato and Belongie, 2002):

Xn
i = 1

ðzi � f ðxi; yiÞÞ2 + l

Z   
v2f

dx2

!2

+

 
v2f

dy2

!2

+ 2

 
v2f

dxdy

!2!
dxdy; (Equation 68)

where l is a tuning parameter specified by the user to balance the goodness of fit and smoothness. This

objective function can be solved using least-square methods, which are reviewed in (Powell, 1996). For a

1-st order spline function, the coefficients a and w can be calculated by solving the linear system (Harder

and Desmarais, 1972): �
K P
PT 0

��
w
a

�
=

�
Z
0

�
; (Equation 69)
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where K is anN3Nmatrix with Kij = UðrijÞ = Uðkðxi;yiÞ � ðxj;yjÞkÞ, P is aN33matrix and its i-th row is (1, xi, yi),

0 and 0 are matrix and vector containing all zeros, respectively. Z= ½z1;.; zN�T represents the observations

from the N known locations.

Kriging method

In addition to interpolation methods, Kriging family, first used to estimate ore reserves in mineral mining

industry (David, 1977), is one of the geostatistics methodologies for valuing, estimating, and studying

spatial characteristics of a regionalized variable (Rehman and Ghori, 2000). Kriging has been employed

to forecast solar irradiance field for temporal horizons ranging from hourly to monthly. Kriging is a potential

approach for intra-hour estimations of grid-scale solar fields. For instance, Jamaly et al. (Jamaly and Kleissl,

2017) applies the Krigingmethod tomodel irradiation at an arbitrary point based on the given time series of

irradiation at some observed locations.

Also known as the best linear unbiased estimator (BLUE) (Robinson, 1991), Kriging estimates the value Z of

arbitrary locations as the weighted sum of Zi at known locations i. Themathematics expression of the repre-

sentative Kriging (Rehman and Ghori, 2000) is:

bZ 0 =
Xn
i = 1

wiZi; (Equation 70)

where n is the number of known locations, wi is the unbiased weights that satisfy:

Xn
i = 1

wi = 1: (Equation 71)

wi will be derived using variogram model to minimize the variance of estimation:

s2
0 = Var½bZ 0 � Z0�; (Equation 72)

under the constraint

E½bZ 0 � Z0� = 0: (Equation 73)

For two locations with separation distance d, the mean and the variogram of the difference in Z are

assumed to be functions of d:

mðdÞ = E½Zðx + dÞ� ZðxÞ� (Equation 74)
gðdÞ = Var½Zðx + dÞ� ZðxÞ�; (Equation 75)

where the varigram g can be estimated using the known samples:

gðdÞ = 1

NðdÞ
XNðdÞ

i = 1

ðZðx +dÞ � ZðxÞÞ2; (Equation 76)

where NðdÞ is the number of sample pairs with a distance d. Theoretically, the increment of the gamma is

finite and will attain a sill with a distance larger than a ‘‘range’’ (illustrated in Figure 12). If the variogram is

non-zero at distance 0 due to sampling errors or measurement errors, the non-zero value of variogram at

distance 0 is called ‘‘nugget value’’. The relation between the variograms and corresponding distances

(distance-to-variograms model) can be fitted using spherical, exponential, or logarithmic curves. To

minimize s0

s2
0 = E

�ðbZ 0 � Z0Þ2


=
X
i

X
j

wiwjE
�ðZi � Z0Þ

�
Zj � Z0

�

=
X
i

X
j

wiwjg
�
xi � xj

�
+ 2
X
i

wigðxi � x0Þ;

(Equation 77)

where xi represent the i-th known location, and the first-order derivation for each w is taken to obtain the

minimum condition:

Xn
j = 1

wjg
�
xi � xj

�
+ l=gðxi � x0Þ; (Equation 78)

subjected to Equation (71). Expressed in matrix form, the above equation is:
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Figure 12. Plot of Variograms with respect to distances and fitted model.
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Gw = g0; (Equation 79)

where G=

8>>>><>>>>:
g11 g12 : g1n 1
g21 g22 : g2n 1
: : : : :
gn1 gn2 : gnn 1
1 1 : 1 0

9>>>>=>>>>;with gij = gðxi � xjÞ. Andw = ½w1;w2;.wn; l�T , where l is the Lagrange

multiplier to guarantee the unbiasedness of the weights. In addition, g0 = ½gðx1 � x0Þ;.gðxn � x0Þ; 1�T . The
gijði; j = 1; 2;.;nÞ is the variogram between known locations, and the gðxi �x0Þ; ði = 1; 2;.;nÞ is the esti-

mated variograms between a known location and an investigated location, which is calculated using the

distance-to-variograms model. Therefore, the vector of weights w can be calculated as:

w = G�1g0: (Equation 80)

Optimization of the distribution for observatories

Spatial estimates/forecasts of solar irradiance benefit from optimized placements of monitoring stations.

Optimized distribution of monitoring stations not only reduces the required number of monitoring stations

but also improves the accuracy and robustness of the spatial forecasts. Zagouras et al. (Zagouras et al.,

2015a) propose an objective framework to optimize the distribution of solar irradiancemonitoring networks

in order to facilitate solar forecasts. The basic theory is to identify coherent zones of solar micro-climate for

utility scale territory using unsupervised clustering techniques. Gridded satellite data is used to charac-

terize the evolution of irradiance, such as ramp frequency and daily averaged irradiance, over the investi-

gated regions. Then k-means clustering algorithm is applied with a deterministic initialization to cluster the

investigated regions into k coherent spatial clusters.

k-means clustering algorithm is a simple and popular unsupervised learning method. k-means clustering

partitions the individuals into varying number of clusters with the following procedures (MacQueen, 1967):

� The algorithm first assumes that the data has a hyper-spherical structure and the clustering criteria is

Euclidean distance.
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� Based on the preset value of k, the algorithm uniformly and randomly select k points as initial centers.

A deterministic initialization procedure discussed in (Zagouras et al., 2014a) can be used, which is

detailed below.

� Each data point associates with the nearest initial center and k clusters are created.

� The locations of the centers are updated by minimizing the distance between the points of a cluster

and their centers.

� Repeat steps 3 and 4 iteratively until a criterion function converges or a predefined maximum num-

ber of iterations is reached.

Once the final cluster centers are output from the k-means algorithm, the performance of the clustering can

be evaluated with two widely used internal validity indices: Cali�nski and Harabasz (CH) index (Cali�nski and

Harabasz, 1974) and Silhouette index (SIL) (Rousseeuw, 1987).

The CH index is expressed as:

CH =
N� k

k � 1

SB

SW
; (Equation 81)

where k is the number of clusters,N is the number of data points, SB is the overall between-cluster variance,

SW is the overall within-cluster variance, ðN�kÞ=ðk�1Þ is a normalization factor.

SB =
Xk
i = 1

Nikmi �mk2; (Equation 82)

where Ni is the number of data points grouped to cluster ci, mi is the centroid of cluster i, m is the overall

center of all data points.

SW =
Xk
i =1

X
x˛ci

kx �mik2; (Equation 83)

where x is a data point. CH measures the separation and compactness of the clusters, and higher CH in-

dicates high partitioning quality among the data.

The SIL is expressed as:

SIL =
X

ci˛c1 ;.;ck

X
xi˛ci

bxi � axi
maxðbxi ; axi Þ

; (Equation 84)

where axi is the average distance between the point xi and all other points inside the cluster ci, bxi is the

minimum of average distances between the point xi and points inside a different cluster cj; js k. SIL quan-

titatively evaluates both cohesion and separation of clusters. The value of SIL ranges from �1 to 1, and SIL

approaches 1 indicating that the points belonging to a cluster have maximal distances from the nearest

cluster.

To avoid solution instability and the risk of convergence to local minimum (Wu et al., 2008), Zagouras et al.

(Zagouras et al., 2014a) use a deterministic initialization scheme based on the reverse nearest neighbor

search scheme (Xu et al., 2009). First, a number of locations are initialized as candidate centers. Then

the nearest neighbor of each data point is calculated. After that, the candidate centers are sorted in de-

scending order according to how many times they are selected as nearest neighbors. Top candidate cen-

ters are usually close to a dense distribution of data points. Therefore, these top candidate centers are

more likely to be close to the true cluster centers. With distance constraints that avoid extremely close

candidate centers, the first N candidate centers with maximum number of associated members are

selected as the initial centers to the k-means algorithm.

Determining the number of clusters is another premise to run the k-means clustering. Increasing the num-

ber of clusters will increase the degree of freedom to assign data points and result in many small and

compact clusters with better performance in terms of validity index. However, a large number of clusters

conflicts with the underlying assumptions of the clustering and adversely affects the clustering correctness

due to local minima (Zagouras et al., 2014a). Therefore, for users without preliminary assumptions
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Figure 13. Demonstration of the L-method

(A) Validity index with respect to the number of clusters.

(B) L-Method to determine the optimal number of clusters, the left region is marked with blue and the right region is

marked with red.
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regarding the number of clusters, L-method developed by (Salvador and Chan, 2005) is suggested in

(Zagouras et al., 2014a) to optimize the number of clusters.

L-method is implemented through plotting an evaluation graph (Figure 13) with the number of clusters

(from 2 to a maximum number M) as x-axis and a validity index as y-axis. Ideally, if a lower validity index

is preferable, the data points will have an ‘‘L’’ shape as it is shown in Figure 13A. Starting from the left

side, the validity index first decreases rapidly with the increase of number of clusters, which indicates

that data are separated into very dissimilar clusters and the quality of the clustering is improving. Then

the improvement slows down and eventually converges when the optimal number has been passed and

similar clusters are created. Therefore, the ‘‘knee’’ of the L-shape represents the optimal number of clusters

as shown in Figure 13B. Two straight lines (linear assumption) are used to fit the left region ðLkÞ and right

region ðRkÞ, respectively. The left and right regions are partitioned at x = k data point. Each line should

cover at least two data points. The total RMSE of curve fitting of Lk and Rk is

RMSEk =
k � 1

M� 1
RMSEðLkÞ+M� k

M� 1
RMSEðRkÞ; (Equation 85)

where k � 1 andM � 1 is used because the x axis starts at 2. The optimal value of k is obtained by minimize

RMSEk:

k = argminkRMSEk : (Equation 86)

Successful clustering of solar micro-climate regions is useful not only to select candidate locations for solar-

power plants but also to improve solar forecasts through optimal placement of new monitoring stations to

collect most relevant exogenous inputs. Based on 15 years of 30-min GHI gridded data from Solar Any-

where (Anywhere, 2012), Zagouras et al. (Zagouras et al., 2014b) apply the clustering technique to the island

of Lanai, Hawaii and identified 4 coherent regions possessing similar attributes (shown in Figure 14). To

forecast the GHI for the La Ola power plant, which is asterisked in Figure 14, Zagouras et al. employ a linear

model with satellite-based additional GHI measurements from Solar Anywhere (Anywhere, 2012). The data

are first clustered and then applied to the forecasting model. Ground-based measurements, if available,

are expected to future improve the performance of both the clustering and forecasting. Figure 14 clearly

demonstrates that the forecasts, which use exogenous measurements from the region of the cluster where

the plant is located, achieve the highest improvement over the endogenous forecasts. Therefore, Zagouras

et al. (Zagouras et al., 2014b) conclude that the optimal location for deployment of the solar instrumenta-

tion to improve the forecasts shall be in the clustered micro-climate region instead of the vicinity region.
DISCUSSIONS AND OUTLOOK

In this section, the progress of intra-hour solar forecasts since 2013 are summarized and discussed. Solar

forecasting literature prior to 2013 are comprehensively reviewed in (Mellit and Kalogirou, 2008; Inman

et al., 2013). Researches of forecast horizon longer than 1-hour, particularly those employing remote-

sensing and NWP techniques, are reviewed in (Law et al., 2014; Yang et al., 2018; Sobri et al., 2018; Ahmed

et al., 2020; Samu et al., 2021). After surveying the literature to the best we can, publications of intra-hour

forecasts and features of their proposed models, such as forecast horizons, methods, input variables, and

data are summarized in Table 3.
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Figure 14. Enhancements of exogenous inputs to the GHI forecasts for La Ola PV plant on the Lanai Island

The lines represent the average valueof the 50 tested cases. The color bands are calculated as twice the standard deviation. The

labels of lines represent the region where the exogenous variables are obtained. The line labeled ‘‘Any’’ represents exogenous

variables from any location on the island. The line labeled ‘‘Vicinity’’ represents exogenous variables from the vicinity of the La

Ola plant (marked as the hatched area) in the inset. Adapted from (Zagouras et al., 2014b), used with permission.
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Given the chaotic nature of atmospheric processes, perfect forecasts of solar irradiance are impractical to

achieve. However, the state-of-the-art intra-hour forecasting technologies, which have already shown ben-

efits to solar integration, still have immeasurable rooms and potentials to be improved in terms of accuracy,

robustness, effectiveness, and adaptiveness. Therefore, we identify several key challenges to intra-hour so-

lar forecasts, and recommend more research efforts to overcome these challenges when developing new

generations of intra-hour solar forecasting methodologies. The new generation of methodologies is ex-

pected to be a vital component to further lower the costs of solar integration and enable solar energy

to be more competitive in both off-the-grid and grid-connected electricity markets.

Performance of forecasting methods

The performance of intra-hour solar forecasts highly depends on weather conditions and forecast horizons.

For example, the forecasting RMSE of a model for cloudy periods could be two to three times larger than

that of the same model for clear periods (Chu et al., 2013). Therefore, we suggest forecast skill (defined in

Equation (17)) to be a more appropriate metric to quantitatively evaluate and compare the performance of

different forecastingmodels, since the forecast skill is robust across different weather conditions. Note that

the forecast skill is not absolutely independent of weather conditions, we will address this issue in weather-

independent and value-based metrics.

In general, forecast skills frommostmodels tend to increase with forecast horizon, which is counter-intuitive

since longer horizons are more difficult to forecast. The reduction of forecast accuracy with respect to

increased temporal horizon is commonly observed in forecasting applications which is not limited to solar

forecasts (Inman et al., 2013). We review the forecast results (e.g. RMSE) used to calculate forecast skills by

each study and notice that accuracy of both proposed models and reference persistence model degener-

ates with the increase in forecast horizon. However, the increase of RMSE with horizon for persistence

model is usually more profound due to its inefficiency to capture future dynamics and therefore results

in the increase of forecast skills.
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Table 3. Summary of publications since 2013 in intra-hour solar irradiance/power forecasting applications

Authors Year

Forecast

variables Forecast horizons Methods Input variables Data

Chu et al. (Chu et al., 2013) 2013 1-min averaged DNI 5- and 10-min Hybrid (ANN and local-sensing) DNI, cloud indices and sky images 1 year of 1-min DNI data and TSI

images from Merced, California

Jafarzadeh et al. (Jafarzadeh

et al., 2013)

2013 15-min averaged PV

power

15 to 60-min TSK fuzzy models PV power, temperature, cloud

cover

1-min data from a power plant in Reno,

USA

Marquez et al. (Marquez

et al., 2013b)

2013 30-min averaged GHI 30-, 60-, 90-, and

120-min

Hybrid (ANNs and remote sensing) GHI and cloud indices from

satellite images

1 year of 1-min GHI data from Davis

and Merced, California and hourly

NA’s GOES West satellite images

Marquez and Coimbra

(Marquez and Coimbra,

2013a)

2013 1-min averaged DNI 3- to 15-min TSI-based local-sensing model that

estimate DNI using empirical

relation between DHI and cloud

cover

DNI and sky images Tested on 4 selected days in Merced,

California

Chu et al. (Chu et al., 2014) 2014 1-min averaged GHI 5-, 10- and 15-min Hybrid (ANN and local-sensing) GHI, cloud indices, and sky images 3 months of 1-min GHI data and sky

images from Folsom, California

Cheng et al. (Cheng et al.,

2014)

2014 1-min averaged GHI 5-, 10- and 15-min SVR GHI history clearness indices and

sky image features

1-min sky images and averaged GHI:

1 week for training and 4 selected days

for testing

Bernecker et al. (Bernecker

et al., 2014)

2014 GHI Quasi-continuous

forecasts up

to 10 min

Local-sensing model with Kalman

filter

GHI, cloud motion, and cloud

cover

Tested on 15 selected days of image

and irradiance data

Dambreville et al.

(Dambreville et al., 2014)

2014 15-min averaged GHI 15 to 60-min ARX and RS HelioClim-3 data 1 year of 1-min ground GHI data and

15-min HelioClim-3 data

Lorenzo et al. (Lorenzo

et al., 2014)

2014 PV power 1 to 28-min Irradiance sensor network PV power and GHI 26 days of 1-s GHI and 10-s PV power

measurements in April

Yang et al. (Yang et al.,

2014)

2014 GHI 5-, 10-, and 15-min Local-sensingmodel that estimates

clear-sky index to forecast GHI

GHI, cloud cover, sky image Tested on 31 days with a variety of sky

conditions

Chu et al. (Chu et al.,

2015c)

2015 1-min averaged

PV power

5-, 10- and 15-min hybrid (ANN with local sensing,

ARMA, or kNN)

PV power and power prediction

from baseline forecasts

1 month of 1-min PV data from Boulder

City, Nevada

Pedro and Coimbra

(Pedro and Coimbra,

2015)

2015 5-min averaged

GHI and DNI

5- to 30-min Hybrid (kNN and local sensing) GHI, DNI, RGB features, and sky

images

2 year of GHI, DNI and sky images from

Folsom, California

Chu et al. (Chu et al.,

2015a)

2015 1-min averaged

GHI and DNI

5-, 10-, 15-, and

20-min

Hybrid (SVM, ANN, and local

sensing)

GHI, DNI, RGB features, and sky

images

1.5 years of GHI, DNI and sky images

from Folsom, California

Lipperheide et al.

(Lipperheide et al., 2015)

2015 PV power 20- to 180-s Cloud speed persistence method

and AR model

PV power, space coordinate of PV

inverters

171 days of 1-s sampled PV power data

Lima et al. (Lima et al.,

2016)

2016 GHI 15- to 60-min Mixed wavelet neural network GHI 1 year solar irradiance data collected in

Singapore

(Continued on next page)
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Table 3. Continued

Authors Year

Forecast

variables Forecast horizons Methods Input variables Data

Wolff et al. (Wolff et al.,

2016)

2016 PV power

measurements

15-min to 5-h SVR PV power, irradiance forecasts

from NWP, and cloud motion

vectors (CMV)

Irradiance and NWP data of March-

November 2013 collected in German

Sanjari et al. (Sanjari

and Gooi, 2016)

2016 PV power PDF 15-min Higher-order Markov Chain PV power, ambient temperature,

and solar irradiance

2 year data collected in Australia

Agoua et al.(Agoua

et al., 2017)

2017 PV power Few min to 6 h Statistical spatiotemporal Model PV power and different spatial

densities of installed PV plants

More than 20 months power data

collected from 9 plants in France

Chu and Coimbra (Chu

and Coimbra, 2017)

2017 DNI PDF 5-, 10- and 15-min kNN and ANN ensemble models DNI, RGB features, and sky images 1-min GHI, DNI data from 4 locations

with different micro-climates

Alzahrani et al. (Alzahrani

et al., 2017)

2017 GHI and plane-of-

array irradiance

– Deep RNN GHI 1-year data from the National

Resources in Canada

Jamaly and Kleissl

(Jamaly and Kleissl,

2017)

2017 Spatial GHI – Kriging method Cloud motion information 1-min SMUD irradiance data from 73

solar monitoring devices and 15-min

averaged power output from 27

distributed PV systems

Wang et al. (Wang

et al., 2017)

2017 PV power 15- to 30-min Hybrid intelligent approach based

on wavelet (WT), deep

convolutional neural network

(DCNN), and spine quantile

regression (QR)

PV power 1-year of PV power data collected in

2015, Belgium

Wang et al. (Wang

et al., 2018b)

2018 PV power Few minutes GRU PV power and 12 weather variables PV power from Global Energy

Forecasting Competition (2014) and 12

weather variables (April 2012 to July

2014) from European Center for

Medium-range Weather Forecasts

Zhang et al. (Zhang

et al., 2018a)

2018 PV power 1-min MLP, CNN, and LSTM PV power and sky images 1.5 years PV power values and

corresponding images gathered in

Kyoto, Japan

Zhang et al. (Zhang

et al., 2018b)

2018 PV power 10-min interval up

to several hours

Hybrid method (volumetric CNN

and RNN)

Solar power and weather data 1-year data of more than 40 physical

variables from Deep Thunder

Sun et al. (Sun

et al., 2018)

2018 PV power 5- to 20-min ahead PV data and sky images 1-year PV system and sky images

data collected at Stanford

University with 1-min frequency

Sun et al. (Sun et al.,

2019)

2019 PV power 15-min A specialized CNN PV power and sky images 1 year data collected at Stanford

University

(Continued on next page)
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Table 3. Continued

Authors Year

Forecast

variables Forecast horizons Methods Input variables Data

Anagnostos et al.

(Anagnostos et al.,

2019)

2019 PV power Up to 15-min and

with a resolution

of 1 s

MLP PV power, DHI, DNI, and sky

images

Data acquired at the University of

Oldenburg from July 19th to August

31st of 2015

Venugopal et al.

(Venugopal et al., 2019)

2019 PV power 15-min Hybrid method (two-step

autoregression-CNN)

PV power and sky images The Stanford University Neural

Network for Solar Electricity Trend

(SUNSET) dataset

Zhao et al. (Zhao

et al., 2019)

2019 DNI 10-min Hybrid method (3D-CNN andMLP) DNI and GBC images 2-year (January 1, 2013 to December

31, 2014) data from the National

Renewable Energy Laboratory (NREL)

Hosseini et al.

(Hosseini et al., 2020)

2020 DNI Minutes to hours Multivariate GRU and LSTM DNI, weather variables, and cloud

cover

Irradiance and weather data (August

2009 to January 2014) are from

National Renewable Energy

Laboratory’s Measurement, and

Instrumentation Data Center for LRSS

located near Denver, CO. Cloud cover

data are from National Oceanic and

Atmospheric Administration (NOAA)

Kong et al. (Kong et al.,

2020)

2020 PV power 4- to 20-min Hybrid method (CNN and LSTM) PV power and sky images Whole sky images and PV output

everyday between 10 am and 5 pm at

30-s interval from December 2018 to

February 2019

Nie et al. (Nie et al.,

2020)

2020 PV power 5-,10-, and 15-min Hybrid method (two-stage

classification-prediction

framework)

PV data and sky images 1-year PV system and sky images data

collected at Stanford University with 1-

min resolution

Zhao et al. (Zhao et al.,

2021)

2021 DNI 10-min Hybrid method (adaptive neuro-

fuzzy inference system)

DNI, DIF, and GBC images 1 year data from NREL Solar Radiation

Research Laboratory

Ajith et al. (Ajith and

Martı́nez-Ramón, 2021)

2021 GHI 15- to 150-s Hybrid method (CNN and RNN) Radiation data and infrared cloud

images

Data collected using a camera and a

pyranometer placed at the University

of New Mexico

Nie et al. (Nie et al.,

2021)

2021 PV power 15-min CNN PV data and sky images The sky images are frames from video

recorded by a fish-eye camera at

Stanford University with 1-min

frequency, PV data are collected from a

30-kW rooftop PV system 125 m away

from the camera
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Data-drivenmodels usually achieve forecast skills about 10–15% in intra-hour forecasting applications(Mel-

lit and Kalogirou, 2008; Inman et al., 2013). The forecast horizons only depend on the sampling frequency,

and their ability to forecast irradiance ramps is limited due to the absence of cloud information. Local

sensing based methods, on the other hand, are able to capture cloud information but deterministic

methods are not efficient in extracting time series information. To integrate the benefits of data driven

and local-sensing techniques, hybrid methods have been proposed. Early hybrid methods use determin-

istic approaches to extract numerical cloud or sky image features, and then use these features as exoge-

nous inputs to train data driven models. These hybrid methods have demonstrated forecast skills up to

20% under cloudy period (Law et al., 2014; Yang et al., 2018).

However, the sky image processing and feature extraction of hybrid methods are mostly based onmanually

crafted models or algorithms, which significantly increase the development and deployment costs of such

models. Therefore, deep learning methods have been introduced to intra-hour solar forecasts for end-to-

end image analysis and irradiance forecasts. The state-of-the-art deep learning based hybrid forecasts usu-

ally employ CNNs to extract image features and RNNs to predict the time series of irradiance or power

generation. These deep learning based hybrid methods achieve not only higher forecast skills (up to

30%), but also higher inference efficiency in real-time applications (Ahmed et al., 2020).

For application orientated forecasts, more research efforts have been invested into longer horizon fore-

casts. Only few studies provide prediction intervals or PDF for intra-hour forecast horizons. Similar to sin-

gle-location forecasts, deep learning based hybrid methods have shown superior performance in terms of

PICP and PINAW (metrics to assess probabilistic forecasts). Ideally, well-performed PIs should have high

PICP indicating high coverage probability of the forecast variable and low PINAW indicating high informa-

tiveness. Increasing the width of PIs will increase the PICP. However, this approach will compromise the

informativeness of the PIs. Generally, PICP decreases while the PINAW increases for longer forecast hori-

zons. However, similar to statistical metrics, the magnitude of both employed performance metrics, partic-

ularly the PINAW, depends on the weather conditions. Chu et al. (Chu et al., 2015b) test the PIs generated

from a hybrid model in real time for four months and find that the PINAW for high DNI variability period is

5–7 times higher than the PINAW for low DNI variability period. Consequently, the magnitudes of PICP and

PINAW also depend on the proportion of stationary weather conditions (e.g. clear period) in the testing

data. Therefore, the reported results in the literature may not be used to objectively judge whether amodel

outperforms another model, particularly in terms of informativeness.
Remarks and outlooks

Standard dataset to quantify forecasting performance

Standardized datasets are essential for the development and benchmarking of methods and algorithms,

which are particularly useful for researchers who have limited resources to deploy and maintain their

own instruments for data collection (Yang et al., 2018). For example, ImageNet (Deng et al., 2009) or

COCO (Lin et al., 2014) are popularly used in computer vision researches, and GLUE (Wang et al., 2018a)

is popularly used in natural language processing researches.

For intra-hour solar forecasting research, different publications report their forecasting performance using

different datasets, making it unfair to directly compare the forecasting performance across all the proposed

methodologies. Therefore, a standardized solar and meteorological dataset is in need for future develop-

ment and comparison among advanced forecasting models. Currently only few solar and meteorological da-

tasets are available. An open-source R package to easily access publicly available solar data sets is developed

by Yang (Yang, 2018). National Solar Radiation Database (NSRDB) published by National Renewable Energy

Laboratory (NREL) (Sengupta et al., 2018). TheNSRDBprovides satellite derived irradiance that coversmost of

the USA. This dataset does not provide 1-min irradiance and weather data that are suitable to develop intra-

hour solar forecasting. Furthermore, the Surface Radiation Budget Network (SURFRAD)managed byNational

Oceanic and Atmospheric Administration (NOAA) (Augustine et al., 2000), provides 1-min averaged solar irra-

diance values from eight ground-based monitoring stations across the Contiguous of United States. SURF-

RAD also provides sky images (on request), but the sky images are low-resolution images captured by a

TSI, which does not provide a whole view of the sky dome because of its sun-blocking stripe.

To fill in the blanks about standardized dataset specifically for solar forecasting research, Pedro et al. (Pe-

dro et al., 2019b) collect, develop and publicize a dataset that contains 1-min resolution quality-controlled
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GHI and DNI data for three consecutive years (2014–2016). In addition to solar irradiance, this dataset also

provides commonly used exogenous variables, such as sky images, satellite imagery, and NWP meteoro-

logical predictions. This comprehensive dataset will potentially accelerate the development and

benchmarking of solar forecasting methods, particularly for intra-hour horizons. Therefore, we recommend

this dataset to be used by future forecasting model developers for benchmarking and comparing their

forecasting results.

Weather-independent and value-based metrics

To the best of our knowledge, there are no widely recognized assessment metrics that are independent of

the effects of local geological and weather conditions. Common statistical metrics are highly dependent on

various factors, such as sampling frequency, geology, meteorology, model assumptions, and particularly

the weather conditions. For example, Quesada et al. (Quesada-Ruiz et al., 2014) have shown that the errors

from the same model differ in orders of magnitude when tested under different weather conditions. For

instance, RMSEs of the same model are less than 10 W/m2 on pure clear days but higher than 100 W/m2

on cloudy days. Therefore, performance of different forecasting models that are tested using different da-

taset cannot be compared directly using statistical metrics.

We recommend forecast skill (defined in Equation (17)) as a more appropriate metric to quantitatively eval-

uate and compare the performance of different forecasting models, because the forecast skill is less

affected by weather. Note that the forecast skill is not absolutely independent of weather conditions.

For example, Yang et al. (Yang et al., 2014) report that persistence forecast is difficult to be surpassed dur-

ing stationary weather conditions, such as clear or overcast days. Moreover, forecasts with lower statistical

errors (e.g. RMSE) may not convey useful information about solar ramps. Chu et al. (Chu et al., 2015c) sug-

gest that the time series of data-driven forecasts (e.g. ARMA) tend to follow the averaged time-series pro-

file in order to minimize statistical error metrics. However, the forecast time series achieve significantly

lower MAE/RMSE compared against a persistence model but miss the events of solar ramps. As a result,

the forecast skill metric using the persistence model as reference has limitations in evaluating the perfor-

mance of a model in forecasting ramps caused by approaching cloud cover.

In addition, due to the arbitrary shapeof clouds and the complexdiffusion and convection processes of clouds, it

is extremely difficult to precisely estimate the transmittance of clouds as well as the propagation of cloud

shadows. When a ramp is successfully detected by the local-sensing forecasts, errors in forecasting the ramp

magnitude and the ramp duration will significantly increase statistical errors (e.g. MAE and RMSE) and return

small or even negative forecast skill, particularly for cumulus cloud passages (Yang et al., 2014). As we discussed

in metrics to assess ramp forecasts, accurate forecasts of solar irradiance ramps are important to operators of

power integration (Zhang et al., 2013; Florita et al., 2013). Therefore, forecasting models with higher accuracy

in terms of statistical metrics might not always be practically optimal for solar integration applications.

Therefore, development of a newmetric or a set of metrics, which can quantitatively evaluate the benefits of

forecasts in terms of integration cost/operational risks, will be highly beneficial to analyze the value of fore-

casts. The forecasts include not only intra-hour solar forecasts but also full temporal-spectrum forecasts of

variable renewables such as solar and wind. Due to the various regulations from authorities in different re-

gions and electricity markets, it may not be practical to uniformly evaluate the beneficial merit of forecasts

using a single metric. On demand-sides, such as CAlifornia Independent System Operator (CAISO), may

calculate the values of forecasts individually based on their own circumstance. Therefore, we recommend

that an evaluation framework/scheme could be developed to estimate the value of forecasts in terms of

cost-reductions or penalty-savings for imbalance settlements (Kaur et al., 2016).

Demand orientated forecasts

As mentioned in the introduction, most of the available forecasting methods provide point predictions for

point locations, which may not be adequate to the integration demands for utility-scale power plant or

grid-scale distributed solar productions. Several techniques are employed in the field of longer horizon so-

lar forecasts and wind forecasts have the potential to be transformed to generate probabilistic or spatial

forecasts for intra-hour time horizons (see probabilistic forecasts and spatial forecasts). Note that the trans-

forming of techniques must be carefully studied and validated because intra-hour solar forecasts have

many unique characteristics. For instance, the time series of irradiance behaves distinctly between clear

and cloudy periods.
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Chu et al. (Chu et al., 2015a) directly employ a Bootstrap-ANN method, which is a frequently used method

for wind energy forecasts, to generate PIs for 5- to 20-min DNI forecasts. The results show that the PIs from

the Bootstrap-ANNmodel are unable to reach the nominal confidence levels as its counterparts employed

in wind forecasts. To improve the Bootstrap-ANN method, Chu et al. develop a hybrid method that adap-

tively applies different ANN schemes for clear and cloudy periods. This hybrid method substantially out-

performs the original Bootstrap-ANN method in terms of PICP and PINAW. The coverage probability of

the hybrid PIs is significantly higher than the nominal confidence level under different weather conditions.

In addition, different solar technologies (CSP, utility-scale PV, and distributed PV) will benefit from forecasts

differently during events of irradiance ramps. Power generation from PV can be linearly modeled using

GHI, efficiency factors, and tilted angles (Khoo et al., 2014; Yoshida et al., 2013). However, the relationship

between CSP production and DNI is more complicated especially during a short time period due to many

factors, such as the thermal inertia of the system and the heat balancing on the irradiance receiver (Guo

et al., 2017). Due to the rapid development of CSP worldwide (Sutherland et al., 2013) with no or limited

thermal storage (Denholm et al., 2013), the state-of-the-art intra-hour DNI forecasts are not sufficient for

the integration operations of CSP. More research efforts are in demand to provide effective intra-hour fore-

casts for CSP integration. For example, direct forecasts of CSP generations using hybrid models with

historical DNI as inputs.

In summary, new generation of intra-hour solar forecasts should take the needs of their customers into

consideration. The mechanisms of various solar generations should be carefully analyzed in order to iden-

tify the optimal forecasting targets/variables. Carefully selected forecast variables would maximize the

benefits of forecasts for power integration, as well as adaptively capture the characteristics of production

ramps for different types of solar techniques.

Full spectrum of forecast horizon

Local-sensing-based forecasts are suitable for time horizons ranging from 3 to 30 min due to the limited

field-of-view of most sky imagers. Other than intra-hour forecasts, the forecasts for horizons less than

3 min are useful for real-time balancing of supply and demand and forecasts for horizons longer than

30 min are useful for decision making in energy imbalance markets (Kaur et al., 2016). Current remote-

sensing-based models are limited by the sampling rate of satellites. Therefore, their forecast frequency

is low and the forecast variables are usually 30 + minutes averaged irradiance. The averaged irradiance

in a relatively long time period will smooth out the high frequency ramps in irradiance, particular for

DNI. However, capturing these high-frequency ramps is essential for grid balancing and reserve operation.

Kaur et al. (Kaur et al., 2016) show that it is beneficial for the market operators to use higher-frequency fore-

casts to allocate resources.

Sensor networks are potential techniques to realize high-resolution (less than 10-min averaging) forecasts

for the full intra-hour spectrum (ranging from intra-minutes to hours-ahead forecasts). The sensor networks

consist of irradiance sensors and cost-competitive sky imagers which can be spatially distributed in areas

ranging from meter squared to kilometer squares. Another advantage of sensor networks over individual

observatory is that sensor networks are capable of constructing spatial forecasts using interpolation or

Kriging techniques, and the spatial forecasts are highly useful for grid-scale regional integration/balancing.

Here, we recommend more advanced forecasting research that integrates both sky imaging and sensor

networks to provide full-spectrum forecasts beyond the intra-hour horizon.

CONCLUSIONS

In this work, we review the fundamental considerations, various mathematical algorithms, and methodol-

ogies with their corresponding advantages and disadvantages for intra-hour forecasts of solar irradiance

and solar power productions. The methods presented here include the following: (1) data-driven methods

(regressive methods, conventional SL methods, and deep learning methods); (2) local-sensing methods

based on sky imagers or sensor networks; (3) hybrid methods which integrate data-driven methods and

local-sensing methods; and (4) methods of probabilistic forecasts and spatial forecasts for grid-scale areas.

State-of-the-art intra-hour forecasting methods have demonstrated effectiveness to facilitate the integra-

tion of solar power. However, these techniques still have substantial room to be improved, so more

research efforts are needed. Here, we recommend several research aspects for future forecasting model
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developers to consider, including: (1) to utilize standard data sets for benchmarking and comparing fore-

castingmodels, in order to accelerate forecasting research; (2) to develop and utilize weather-independent

and value-based forecasting performance assessment schemes; (3) to generate solar-integration-orien-

tated forecasts for different types of solar power production technologies, especially focus on quantifying

ramp characteristics; and (4) to provide high-resolution forecasts for a complete temporal spectrum

ranging from seconds to hours.

With the development of advanced deep learning methods and sensor network techniques, we expect the

development of a new generation of adaptive intra-hour solar forecasting methodologies in the near

future, which are capable of satisfying the dynamic demands from solar commercialization and integration.
NOMENCLATURE
� Convolutional operator

b Parameters

g Skewness

g2 Kurtosis

bI Forecasted irradiance, W m�2

bIp Forecasted irradiance by Persistence model, W m�2

m Mean value

r Correlation coefficient

s Standard deviation

qe Solar elevation angle, rad

qz Solar zenith angle, rad

ε Error

b bias

C Constant

d Distance

Ha Rényi entropy

hv High variability period

Iclr clear-sky irradiance, W m�2

K Clearness index

k Clear-sky index

lv Low variability period

p Probability density

R2 Coefficient of determination

s Forecast skill

u Moment vector

w Weight

ADALINE Adaptive linear neuron

ADAM Adaptive moment estimation algorithm

AGC Automatic generation control
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AM Air mass

ANN Artificial neural network

AR Auto-regressive

ARIMA Auto-regressive integrated moving averages

ARMA Auto-regressive moving average

BRBR Normalized red blue ratio

BS Brier score

BSS Brier skill score

CAISO California independent system operator

CDF Cumulative distribution function

CH Cali�nski and Harabasz index

CIE International Commission on Illumination

CMV Cloud motion vector

CNN Convolutional neural network

CPV Concentrated photovoltaic

CRPS Continuous ranked probability score

CSIA Clear-sky identification algorithm

CSL Clear-sky library

CSP Concentrated solar power

CWC Coverage-width-based criterion

DIF Diffuse irradiance, W m�2

DNI Direct normal irradiance, W m�2

FH Forecast horizon

FRI False ramp index

FTM Fixed thresholding method

GA Genetic algorithm

GHI Global horizontal irradiance, W m�2

GRU Gated recurrent unit

HCF Haze correction factor

HDR High dynamic range imaging techniques

HYTA Hybrid thresholding algorithm

IDW Inverse distance weighting

IHS Intensity, hue, saturation space

kNN k-nearest neighbor

KSI Kolmogorov–Smirnov integral

LSTM Long short-term memory unit

LUBE Lower upper bound estimation

MA Moving average
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MAE Mean absolute error

MAPE Mean absolute percentage error

MBE Mean biased error

MCE Minimum cross entropy method

MLP Multilayer perceptron

MOS Model-output-statistic

MQD Minimum quadratic difference

MRE Missing Rate Error

NOAA National oceanic and atmospheric administration

NREL National renewable energy laboratory

NSRDB National solar radiation database

NWP Numerical weather prediction

OF Optical flow

PDF Probability density function

PI Prediction interval

PICP Prediction interval coverage

PINAW Prediction interval normalized averaged width

PIV Particle image velocimetry

PV Photovoltaic

RBD Red blue difference

RBF Radial basis function

RBR Red blue ratio

RDI Ramp detection index

ReLU Rectified linear unit

RGB Red green blue color channels

RMI Ramp magnitude forecast index

RMSE Root mean square error

RNN Recurrent neural network

RS Remote sensing

RTM Radiative transfer model

SACI Smart adaptive cloud identification method

SIFT Scale invariant feature transform

SIL Silhouette index

SL Stochastic learning

SUNSET Stanford University neural network for solar electricity trend dataset

SURFRAD Surface radiation budget network

SVM Support vector machine

SVR Support vector regression
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Continued

TSI Total sky imager

WRF Weather research and forecasting model

WRR World radiometric reference
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statistique en météorologie solaire. Revue de
Physique Appliquee 14, 145–153.

Bosch, J.L., Zheng, Y., and Kleissl, J. (2013).
Deriving cloud velocity from an array of solar
radiation measurements. Solar Energy 87,
196–203.

Boyle, G. (2012). Renewable Electricity and the
Grid: The Challenge of Variability (Routledge).

Bracale, A., Caramia, P., Carpinelli, G., Di Fazio,
A.R., and Ferruzzi, G. (2013). A bayesian method
for short-term probabilistic forecasting of
iScience 24, 103136, October 22, 2021 45

https://doi.org/10.1016/j.isci.2021.103136
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref1
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref1
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref1
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref1
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref2
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref3
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref3
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref3
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref4
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref4
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref4
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref4
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref5
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref5
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref5
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref5
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref5
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref6
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref6
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref6
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref6
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref7
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref7
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref7
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref7
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref8
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref8
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref8
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref8
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref9
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref9
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref9
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref9
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref10
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref10
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref10
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref10
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref11
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref12
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref12
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref12
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref12
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref12
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref13
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref13
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref13
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref13
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref14
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref14
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref14
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref14
http://www.solaranywhere.com
http://www.solaranywhere.com
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref16
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref16
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref16
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref16
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref17
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref18
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref18
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref18
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref18
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref19
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref19
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref19
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref20
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref20
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref21
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref22
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref22
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref22
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref23
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref23
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref23
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref23
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref24
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref24
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref25
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref25
http://refhub.elsevier.com/S2589-0042(21)01104-4/sref25


ll
OPEN ACCESS

iScience
Review
photovoltaic generation in smart grid operation
and control. Energies 6, 733–747.

Bremnes, J.B. (2004). Probabilistic wind power
forecasts using local quantile regression. Wind
Energy 7, 47–54.

Bremnes, J.B. (2006). A comparison of a few
statistical models for making quantile wind power
forecasts. Wind Energy 9, 3–11.

Brier, G.W. (1950). Verification of forecasts
expressed in terms of probability. Monthly
Weather Rev. 78, 1–3.

Brinkworth, B.J. (1977). Autocorrelation and
stochastic modeling of insolation sequences.
Solar Energy 19, 343–347.

Burrows, W.R., Vallée, M., Wardle, D.I., Kerr, J.B.,
Wilson, L.J., and Tarasick, D.W. (1994). The
canadian operational procedure for forecasting
total ozone and uv radiation. Meteorol. Appl. 1,
247–265.

Bush, B.C., Valero, F.P.J., Simpson, A.S., and
Bignone, L. (2000). Characterization of thermal
effects in pyranometers: a data correction
algorithm for improved measurement of surface
insolation. J. Atmos. Oceanic Technol. 17,
165–175.

Cali�nski, T., and Harabasz, J. (1974). A dendrite
method for cluster analysis. Commun. Statist.
Theory Methods 3, 1–27.

Carney, J.G., Cunningham, P., and Bhagwan, U.
(1999). Confidence and prediction intervals for
neural network ensembles. In Neural Networks,
1999. IJCNN’99. International Joint Conference
on, IEEE, pp. 1215–1218.

Cazorla, A., Olmo, F.J., and Alados-Arboledas, L.
(2008). Development of a sky imager for cloud
cover assessment. JOSA A 25, 29–39.

Chaabene, M., and Ben Ammar, M. (2008).
Neuro-fuzzy dynamic model with Kalman filter to
forecast irradiance and temperature for solar
energy systems. Renew. Energy 33, 1435–1443.

Chang, C., and Lin, C. (2011). LIBSVM: a library for
support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 27.

Cheng, H.Y., Yu, C.C., and Lin, S.J. (2014). Bi-
model short-term solar irradiance prediction
using support vector regressors. Energy 70,
121–127.

Chow, C.W., Urquhart, B., Lave, M., Dominguez,
A., Kleissl, J., Shields, J., and Washom, B. (2011).
Intra-hour forecasting with a total sky imager at
the UC San Diego solar energy testbed. Solar
Energy 85, 2881–2893.

Chryssolouris, G., Lee, M., and Ramsey, A. (1996).
Confidence interval prediction for neural network
models. Neural Networks. IEEE Trans. 7, 229–232.

Chu, Y., and Coimbra, C.F. (2017). Short-term
probabilistic forecasts for direct normal
irradiance. Renew. Energy 101, 526–536.

Chu, Y., Pedro, H.T.C., and Coimbra, C.F.M.
(2013). Hybrid intra-hour DNI forecasts with sky
image processing enhanced by stochastic
learning. Solar Energy 98, 592–603.
46 iScience 24, 103136, October 22, 2021
Chu, Y., Pedro, H.T.C., Nonnenmacher, L., Inman,
R.H., Liao, Z., and Coimbra, C.F.M. (2014). A smart
image-based cloud detection system for intra-
hour solar irradiance forecasts. J. Atmos. Oceanic
Technol. 31, 1995–2007.

Chu, Y., Li, M., Pedro, H.T.C., and Coimbra,
C.F.M. (2015a). Real-time prediction intervals for
intra-hour dni forecasts. Renew. Energy 83,
234–244.

Chu, Y., Pedro, H.T.C., Li, M., and Coimbra,
C.F.M. (2015b). Real-time forecasting of solar
irradiance ramps with smart image processing.
Solar Energy 114, 91–104.

Chu, Y., Urquhart, B., Gohari, S.M.I., Pedro,
H.T.C., Kleissl, J., and Coimbra, C.F.M. (2015c).
Short-term reforecasting of power output from a
48 mwe solar pv plant. Solar Energy 112, 68–77.

Coddington, O., Lean, J., Pilewskie, P., Snow, M.,
and Lindholm, D. (2016). A solar irradiance
climate data record. Bull. Am. Meteorol. Soc. 97,
1265–1282.

Crabtree, G., Misewich, J., Ambrosio, R., Clay, K.,
DeMartini, P., James, R., Lauby, M., Mohta, V.,
Moura, J., Sauer, P., et al. (2011). Integrating
renewable electricity on the grid. AIP Conf. Proc.
1401, 387–405.

Craggs, C., Conway, E.M., and Pearsall, N.M.
(2000). Statistical investigation of the optimal
averaging time for solar irradiance on horizontal
and vertical surfaces in the UK. Solar Energy 68,
179–187.

Crispim, E.M., Ferreira, P.M., and Ruano, A.E.
(2008). Prediction of the solar radiation evolution
using computational intelligence techniques and
cloudiness indices. Int. J. Innov. Comput. Inf.
Control 4, 1121–1133.

Dambreville, R., Blanc, P., Chanussot, J., and
Boldo, D. (2014). Very short term forecasting of
the global horizontal irradiance using a spatio-
temporal autoregressive model. Renew. Energy
72, 291–300.

David, M. (1977). Geostatistical Ore Reserve
Estimation (Elsevier).

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and
Fei-Fei, L. (2009). Imagenet: a large-scale
hierarchical image database. In Proc. IEEE
Comput. Vis. Pattern Recognit. (CVPR),
pp. 248–255.

Denholm, P., Wan, Y.H., Hummon, M., and
Mehos, M. (2013). An analysis of concentrating
solar power with thermal energy storage in a
California 33% renewable scenario. Contract 303,
275–3000.

Dev, S., Savoy, F.M., Lee, Y.H., and Winkler, S.
(2014). Wahrsis: a low-cost, high-resolution whole
sky imager with near-infrared capabilities. In SPIE
Defense+ Security, International Society for
Optics and Photonics, p. 90711L.

Diagne, M., David, M., Lauret, P., Boland, J., and
Schmutz, N. (2013). Review of solar irradiance
forecasting methods and a proposition for small-
scale insular grids. Renew. Sustain. Energy Rev.
27, 65–76.
Donato, G., and Belongie, S. (2002). Approximate
thin plate spline mappings. In Computer Vision—
ECCV 2002 (Springer), pp. 21–31.

Van den Dool, H. (1989). A new look at weather
forecasting through analogues. Monthly weather
Rev. 117, 2230–2247.

Doubleday, K., Hernandez, V.V.S., and Hodge,
B.M. (2020a). Benchmark probabilistic solar
forecasts: characteristics and recommendations.
Solar Energy 206, 52–67.

Doubleday, K., Jascourt, S., Kleiber, W., and
Hodge, B.M. (2020b). Probabilistic solar power
forecasting using bayesian model averaging.
IEEE Trans. Sustain. Energy 12, 325–337.

Du, P. (2018). Ensemble machine learning-based
wind forecasting to combine nwp output with
data from weather station. IEEE Trans. Sustain.
Energy 10, 2133–2141.

Durre, I., Vose, R.S., and Wuertz, D.B. (2006).
Overview of the integrated global Radiosonde
archive. J. Clim. 19, 53–68.

Dybowski, R., and Roberts, S. (2001). Confidence
intervals and prediction intervals for feed-forward
neural networks. Clin. Appl. Artif. Neural Netw.
298–326.

Eckel, F.A., and Walters, M.K. (1998). Calibrated
probabilistic quantitative precipitation forecasts
based on the mrf ensemble. Weather Forecast.
13, 1132–1147.

Florita, A., Hodge, B., and Orwig, K. (2013).
Identifying wind and solar ramping events. In
Green Technologies Conference, 2013 IEEE
(IEEE), pp. 147–152.

Foley, A.M., Leahy, P.G., Marvuglia, A., and
McKeogh, E.J. (2012). Current methods and
advances in forecasting of wind power
generation. Renew. Energy 37, 1–8.

Freedman, D.A. (2009). Statistical Models: Theory
and Practice (Cambridge University Press).
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