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a b s t r a c t

A network of seven low-cost hemispheric sky-imaging cameras has been installed in the Los Angeles
basin. This network of cameras provides wide sky coverage to perform spatial solar irradiance assess-
ments. An Image to Irradiance algorithm (I2I) is proposed to simultaneously derive high-resolution
diffuse, direct and global solar irradiance from sky images. Spatial interpolation using the Kriging
method is used to derive the irradiance field for the whole basin area. The relatively inexpensive network
of cameras can provide spatially resolved GHI that is more accurate than GHI derived from GOES-west
satellite images provided by the Cooperative Institute for Meteorological Satellite Studies (CIMSS)
when the distance to the nearest site is less than 40 km. This work successfully demonstrates that, with
minor trade-off in accuracy, solar irradiance monitoring can be achieved using off-the-shelf cameras in
the absence of radiometers.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

California utilities are experiencing unprecedented growth of
distributed solar energy in order to align with the goal for utilities
to generate 50% of power from renewable sources by 2030 [1,2]. The
dramatic growth in Photovoltaic (PV) installations will introduce
significant variability to the electric grid due to the variable nature
of solar irradiance [3]. If short-term (particularly intra-hour hori-
zons) solar irradiance can not be accurately assessed, the costs of
the integration of solar power will remain costly because of the
excess investment on energy storage or regulation capacity,
particularly for micro-grids and distribution feeders [4,5]. Major
components of ground level solar irradiance include Global Hori-
zontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse
Horizontal Irradiance (DHI). High resolution GHI assessment is
particularly useful for the design and operation of PhotoVoltaic (PV)
system while DNI assessment is of great importance for Concen-
trated Solar Power (CSP) systems.

To assess short-term high-resolution solar irradiance, different
radiometers such as pyranometers or pyrheliometers have been
developed based on either thermopiles or photodiodes sensors
ra).
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[6,7]. To assess GHI, DNI, DHI all together using only one device,
Rotating Shadowband Irradiometers (RSIs) have been proposed [8].
However, the rotating shadowband or shadowball will decrease the
sampling frequency of irradiance measurements, and precise con-
trols of the shadowband to track and block the Sunwill significantly
increase the maintenance costs of deployed RSIs.

Assessing solar irradiance using sky imaging systems is a po-
tential approach to address the above issues. Sky imaging systems
play important roles in aerosol characterization, cloud detection,
and solar forecasting [9]. Sky imagers provide spatial-temporal
information on the dynamics of clouds, which is the dominating
factor affecting ground-level irradiance. Multipurpose sky imagers
are also used for calculation of cloud base height [10], automatic
clear sky detection [11], distribution analysis of atmospheric scat-
ters [12], and cloud cover assessment for meteorological applica-
tions [13]. If all components of solar irradiance are assessed by cost-
effective sky imagers in place of additional solar instrumentation,
the overall cost of telemetry can be noticeably decreased. Such
systems have been proposed in the literature [9,14,15]. However,
available studies either depend on expensive total sky imagers or
are unable to simultaneously estimate all components of solar
irradiance. Recently, researchers have used inexpensive imaging
devices to measure irradiance and other atmospheric variables. For
instance, Kocifaj et al. [16] used all-sky camera images to derive
upward emission and Garstang's emission function. H€anel et al. [17]
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proposed the use of calibrated consumer digital cameras with
fisheye lenses to measure night sky brightness. For day-time solar
irradiance measurement, Scolari et al. [18] estimated GHI using
principal component analysis and artificial neural network based
on images obtained from an all-sky camera. Herrera et al. [19]
proposed a GHI estimation scheme based on a linear regression
using RGB sky image features. Jiang et al. [20] used a CNN based
image regression approach to calculate solar irradiance during
cloudy periods. Valentín et al. [21] developed an irradiance nowcast
method based on low-cost sky imager. In addition to nowcast,
Kamadinata et al. [22] used an ANN to predict GHI for 1e5 min in
advance from sky images.

In many real world applications, irradiance assessment for a
single point in space is not sufficient. For instance, operators of
large centralized solar installations need to understand the solar
resource over the solar farm, which usually covers areas of several
kilometers square. Utility operators need to assess the distributed
solar generations over large areas (e.g. cities) to estimate the
amount of underlying demand and the penetration of distributed
solar power [23]. Consequently, spatial assessment of solar irradi-
ance is essential for planning, integrating, regulating, and man-
aging solar power generations. However, few studies develop
image-based irradiance measurement methods for large areas.

To address these issues, an Image to Irradiance algorithm (I2I) is
developed in this work to derive all components of solar irradiance
(GHI, DNI, and DHI) from images captured by low-cost fish-eye
cameras. This fish-eye camera (named as SkyCam in this work) is
equipped with a CMOS sensor, which captures sky images in which
the pixel color intensity is highly correlated to the solar irradiance
values [24,25]. Based on the I2I algorithm, a network of SkyCams is
developed for high-resolution intra-hour spatial solar assessment.
The network of SkyCams is deployed to assess minute-wise solar
irradiance field (via the I2I model) for the Los Angeles basin using
kriging spatial interpolation technique, whose performance is
validated by cross validation and compared against satellite-
derived GHI (temporal resolution of 15-min). The proposed Sky-
Cam network system is useful to develop accurate low-cost spatial
solar assessments for both large centralized solar plants and
distributed solar power systems over a large area.

The Image to Irradiance methodology is introduced in Section 2.
The derivation of irradiance field over the LA basin area is presented
in Section 3. The validation of the proposed I2I algorithm is pre-
sented in Section 4. Conclusions are followed in Section 5.

2. Image to irradiance model for SkyCam

In this section, an Image to Irradiance (I2I) model is developed to
derive solar irradiance values from sky images. In this model,
relevant image features are extracted from SkyCam images, and the
diffuse horizontal irradiance (DHI), direct normal irradiance (DNI)
and global horizontal irradiance (GHI) are derived based on these
image features.

2.1. Data preparation and feature engineering

For a plane normal to the zenith, both direct and diffuse irra-
diance components are received from the hemispherical sky.
Therefore in this work, a low-cost Vivotek model FE8173V camera
(denoted as “SkyCam”) is used to capture sky images with
180�Panoramic View and 360�Surround View. The FE8173V is a
fish-eye fixed dome network camera featuring a 3.1 MP-resolution
sensor. It is weatherproof and suitable for monitoring outdoor
areas. The specifications of the camera are presented in Table 1. The
SkyCam captures a sky image every minute and transfers it via FTP
through 4G data network to a server located at University of
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California San Diego. The captured images are 1536 by 1536 RGB-
based JPG images that can be directly interpreted by the pro-
posed algorithm. The pixel intensities of RGB channels range from
0 to 255. This process is fully automated, requiring only occasional
cleaning of the camera dome. In addition to regular dome cleaning,
about 5% of archived images are randomly selected for manual
inspections. Images with dirt or drops are removed from the model
development phase to ensure good image quality.

The I2I model is developed at a single independent (San Diego,
California) location and then applied to the network of cameras.
Themodel uses 1-min sampled sky images capturedwith a SkyCam
and DHI, GHI and DNI co-located measurements acquired a Multi-
Filter Rotating Shadowband Radiometers (MFR-7, Yankee Envi-
ronmental Systems). Images are captured using two different set-
tings for the camera: from July 20 to August 20, 2015, the SkyCam
was set to a constant exposure time of 1/32 000 s (the lowest
setting of this camera); from August 20 to September 20, 2015, it
was set for an automated exposure time. Nighttime images and
irradiance measurements are discarded. Training and testing
datasets were separated based on theweek number, with data from
odd weeks assigned to the training set and the remainder assigned
to the testing set. Both the training and testing sets include diverse
weather and cloud-cover conditions.

The I2I model considers, for each time instance, the current
image and the five previous 1-min sampled images, thus consid-
ering cloud motion and cloud fraction information. In searching for
informative image features, fivemasks are applied to each image, as
shown in Fig. 1. Fig. 1 (a) shows an example of a sky image, (b)
shows the projected image (to eliminate fish-eye distortion [16,26])
and (c) shows cloud velocity vectors derived by Particle Image
Velocimetry (PIV) method [27]. The next five panels show the
aforementioned five masks:

C a strip mask in the reverse direction of average cloud motion
e Fig. 1(d);

C a grid element from the strip mask in which the distance
from the grid element to the Sun is the cloud speed times the
time lag e Fig. 1(e);

C a disk mask whose boundary is perpendicular to the cloud
velocity (it includes possible clouds that are moving towards
the Sun) e Fig. 1(f);

C a mask that only contains the Sun and circumsolar region,
where Sun location is found by a Sun locating algorithm
proposed in Ref. [25]e Fig.1(g); On the projected images, the
radius of themask is 25 pixels, which is about 5� half-angle of
view. The current recommended half-angle of the World
Meteorological Organization (WMO) is 2.5� [28]. The half-
angle of the mask is larger than the WMO recommenda-
tion in order to account for any error in the sun locating
algorithm.

C and a mask that contains only the sky dome, excluding cir-
cumsolar region and surrounding obstacles e Fig. 1(h);

The features used to model irradiance are extracted from seven
color representations for each image [29,30]. They are: red channel
(R), green channel (G), blue channel (B), hue (H), saturation (S),
value (V) and intensity (I). All are scaled to be in range [0, 1]. For
each of the masks presented above, 30 image features (Table 2) are
calculated. For each time instance, the total number of numerical
variables obtained from sky images is (number of features per
mask) � (number of masks) � (number of lagged
images) ¼ 30 � 5 � 6 ¼ 900.



Table 1
SkyCam specifications.

Weight 0.6 kg Dimensions 145 mm (D), 52 mm(H)
Temp. Range �25 to 50 �C Power 3.84 W peak
Voltage 12 VDC Connector Power-over-Ethernet or standard 3-prong US AC plug

Fig. 1. Image pre-processing before the derivation of irradiance. (a) original image, (b) projected image, (c) cloud moving velocity, (d)ladder mask, (e) grid mask, (f) disk mask, (g)
sun mask and (h) sky mask.
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2.2. Derivation of diffuse horizontal irradiance

Given that DHI results from the light scattered in the atmo-
sphere, it is reasonable to consider only features obtained from the
mask that include all the sky dome (Fig. 1(h)). Therefore, DHI
modeling relies on 30 � 6 ¼ 180 numerical variables at each time
instance. Relationship between the measured DHI with the best
correlated features for dynamic exposure images and constant
exposure images is shown in Fig. 2. As shown in Fig. 2, the image
features obtained with constant exposure have a much stronger
linear correlationwith DHI than features from dynamically exposed
images. Therefore, the default exposure setting (which is dynamic)
of the SkyCam should be changed to have a constant exposure time
for I2I applications.

Given the high linear correlation between DHI and some of the
Table 2
Image features calculated in each mask.

Features Descriptions

1e7 mean of R,G,B,H,S,V,I
8e14 standard deviation of R,G,B,H,S,V,I
15e21 entropy of R,G,B,H,S,V,I
22 mean of (ReB)/(R þ B)
23 mean of (ReB)
24 mean of (R,I)
25 mean of 1/3(R þ G þ B)
26 mean of (ReB),S
27 mean of (ReB),H
28 mean of H,S
29 mean of R,V
30 mean of B,V
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image features, we explore a simple linear model to derive 5-min
averaged DHI from the 180 variables:

Îd ¼ a0 þ
X180

i¼1
aiFi (1)

where ai are regressed coefficients and Fi are image features.
To account for nonlinearity, a MultiLayer Perceptron (MLP)

model is also explored. The MLP is a popular stochastic learning
tool for pattern recognition, data classification and regression, and
has proven to be useful for non-linear input/output mapping [31].
The weights and bias of MLP are estimated using the training data
set by a supervised learning process [32,33]. In this work, the MLP
places the basic processing elements (neurons) in layers and allows
only forward connections of the neurons [34]. Layers between the
first input layer and the last output layer are hidden layers. Neurons
take in weighted sum of inputs Xj from various layers, add bias, and
produce an output using an activation function,

Yi ¼ f

0
@XM

j¼1
ðwijXj þ bijÞ

1
A; (2)

where Yi is the output from the i � th neuron, and f(,) is the acti-
vation function. The structure of the MLP follows the recommen-
dation of previous works [30,35]: the number of hidden layer is set
to 1 and the number of neurons per hidden layer is set to 7. Once
the learning process is finished, the MLP model generates derived
DHI using new inputs (selected image features).

For a proper comparison between features obtained with fixed
and dynamic exposure settings, the model is applied to both cases.
Several error metrics (defined in Appendix A) for the DHI model



Fig. 2. DHI with respect to best correlated image feature for (a) cameras with default dynamic exposure time and (b) cameras with constant exposure time. By setting the exposure
time to be a constant, the image feature is much better correlated with the irradiance values as indicated by the values of correlation coefficients.
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based on the two data sets are presented in Table 3. As expected
from Fig. 2, the errors are much smaller for features from constant
exposure settings. The values listed in the table demonstrate that
the linear model, despite its simplicity, performs marginally better
than the MLPmodel. Thus, in the remainder of this paper, we adopt
the linear model using features from constant exposure images to
estimate DHI.

Fig. 3 plots the derived DHI and measured DHI time series and
the respective instantaneous error. As shown in the figure, the
derived DHI effectively captures the measured values. It is worth
mentioning that this model also performs well in periods of large
variability in which DHI ramps up or down suddenly.
2.3. Derivation of global horizontal irradiance

Since GHI is the combination of both the direct and diffuse
irradiance components, features from the five masks that include
both the sky dome and the circumsolar region are considered in the
I2I model leading to 900 predictors at each time instance. Similar to
DHI derivation, a linear model and an MLP model are explored to
derive GHI clear sky index. The GHI clear sky index kt is defined as
GHI divided by clear sky GHI [35,36], where clear sky GHI is ob-
tained using Ineichen's clear sky irradiance model [37]. The lowest
exposure time setting is chosen to minimize the pixel saturation
issues, especially in the circumsolar area. The aforementioned
methods may suffer from relatively large errors when the Sun is
obscured by thin clouds, during which the circumsolar pixels are
still saturated but the ground-level GHI or DNI decrease signifi-
cantly. This situation will be further investigated in our future
works.

Fig. 4 plots the correlation coefficient between GHI's clear sky
index and the 900 image features. The absolute values of the cor-
relation coefficients are plotted in Fig. 4 in the form of a color map.
Table 3
I2I performance of DHI derivation.

Dynamic Exposure Contant Expo

Linear model Linear mode

MBE [Wm�2] �11.1 2.6
MAE [Wm�2] 46.1 29.0
RMSE [Wm�2] 73.2 39.2
rRMSE [%] 58.2 16.4
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The labels in the x-axis indicate the mask that was applied and the
values in the y-axis indicate the lag of the image/feature. The color
map indicates that sun mask features have the highest correlation
coefficients with GHI clear sky index, followed by sky mask. Fea-
tures derived with the other three masks (disk mask, strip mask
and ladder mask) rarely show large correlations, and are, therefore,
not included in the set of predictors in the I2I model.

Table 4 presents the results for GHI derivation as a function of
the model (linear or MLP) and 12 sets of predictors described in the
table. The results indicate that, in this case, the MLP model out-
performs the linear model and that using only features obtained
with the Sun mask and sky mask (Model 7) leads to the lowest GHI
estimation error. The RMSE of Model 7 is 3.2% less than that of the
second best Model 6, and is 10.1% less than that of the median
performing model. Therefore Model 7 was selected for further
analysis in this work. For data captured at different conditions or by
different devices, Model 7 may not be the best one. Therefore, we
provided details of other potential models in Table 4 that may
better suit other scenarios. The I2I GHI time series sample is plotted
in Fig. 5.
2.4. Derivation of direct normal irradiance

The methodology to derive DNI is similar to that of GHI deri-
vation. Once clouds are present, the influence of aerosols becomes
less significant. Therefore, we choose to use a clear-sky model that
has built-in AOD information to normalize DNI. Then our I2I is
focused on inferring cloud optical depth (COD) from the image
features. Trial and error experiments with the training data set
leads to an MLP model that uses 360 image features from the sun
and sky masks to derive DNI clear sky index. A sample of the
derived DNI time series is plotted in Fig. 6, indicating that the
model effectively captures the ramps of DNI as well. Note that DNI
sure Dynamic Exposure Contant Exposure

l MLP model MLP model

�1.8 �5.7
40.6 31.8
69.5 44.9
55.3 18.8



Fig. 3. Sample derived DHI time series compared against measured DHI for a few days in the testing set.

Fig. 4. Absolute value of the correlation coefficients of image feature and GHI clear sky index, for the 5 masks in 6 lagged images.

Table 4
Input selection for GHI derivation.

error matrix
Linear MLP model

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12*

MBE [Wm�2] 1.0 19.4 �2.1 14.5 2.5 �8.7 6.4 ¡8.4 4.8 �2.7 3.0 �0.9 8.3
MAE [Wm�2] 64.7 66.2 71.7 76.8 62.5 62.5 53.0 51.6 57.2 56.0 56.2 57.2 56.8
RMSE [Wm�2] 86.4 95.8 96.1 109.4 89.1 85.8 75.6 73.2 78.9 77.8 78.1 78.0 80.6
rRMSE [%] 15.4 14.2 16.7 16.1 15.9 15.1 13.6 13.0 14.2 13.8 14.0 13.9 14.6

1* 900 inputs: all features.
2* 180 inputs: strip mask features.
3* 180 inputs: ladder mask features.
4* 180 inputs: disk mask features.
5* 180 inputs: Sun mask features.
6* 180 inputs: sky mask features.
7* 360 inputs: Sun and sky masks features.
8* Sun and sky masks features, when correlation coefficient > 0.7.
9* Sun and sky masks features, when correlation coefficient > 0.6.
10* Sun and sky masks features, when correlation coefficient > 0.5.
11* 300 inputs: Sun and sky masks, 5 lagged images (0 to 4-min lagged).
12* 420 inputs: Sun and sky masks, 7 lagged images (0 to 6-min lagged).
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usually has larger variability than GHI, as such, the error of the I2I
DNI model (listed in the error plot in Fig. 6) is larger than that of
GHI.

As observed in Figs. 3, 5 and 6, the relatively large errors are
usually associated with more dynamic weather when irradiance
time series show significant fluctuations. Therefore, the error not
only arises from the I2I algorithm, but also from potential syn-
chronization mismatch between pyranometer and sky image,
particularly when the irradiance fluctuates violently. A properly
1013
calibrated sensor may still encounter similar errors. In future work,
we will consider the application of calibrated cameras to enhance
the performance.

3. Assessing spatial GHI over an area using a network of
cameras

Sky images for spatial GHI derivation are captured using Sky-
Cams deployed in the Los Angeles basin from April 1 to November 1,



Fig. 5. Sample derived GHI time series. The I2I GHI was obtained with the MLP model with the 7* set inputs as listed in Table 4.

Fig. 6. Sample derived DNI time series. The I2I DNI was obtained with the MLP model with the 7* set inputs as listed in Table 4.
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2017. The exposure time of all the SkyCams has been set as con-
stant, according to the discussion above. Also, in the results pre-
sented below, nighttime measurements have been discarded.

3.1. Monitoring sites and data

The monitoring sites for the SkyCam network were chosen
based on feasibility, site accessibility, and good field of view (that is,
no major obstructions from trees or buildings). Table 5 presents the
information of the monitoring sites.

3.2. Spatial interpolation methods

Ideally high-resolution grid solar irradiance could be obtained
with a dense network of sensors. In practice, this is unattainable
due to high cost, maintenance requirements, and adverse terrain
conditions [38]. Alternatively, interpolation techniques based the
measurement from a few distributed monitoring sites can be used
to estimate irradiance field in a large geographical domain [39,40].

Kriging interpolation [41] is one of the geostatistics methodol-
ogies for valuating, estimating, and studying spatial characteristics
of a regionalized variable [42]. Also known as the best linear un-
biased estimator [43], kriging estimates the value Z at arbitrary sites
as the weighted sum of Zi at known sites i. The mathematical
1014
expression of the representative ordinary kriging is [42]:

Ẑ0 ¼
XN

i¼1
wiZi; (3)

where N is the number of known sites, wi is the unbiased weights:

XN

i¼1
wi ¼ 1: (4)

wi will be derived using variogram model to minimize the variance
of the estimation:

s20 ¼ Var½Ẑ0 � Z0�; (5)

under the constraint:

E½Ẑ0 � Z0� ¼ 0: (6)

For two sites with separation distance d, the mean and the
variogram of the difference in Z are assumed to be functions of d:

mðdÞ ¼ E½ZðxþdÞ� ZðxÞ� (7)



Table 5
Monitoring sites of the SkyCams.

ID Sites Latitude, � Longitude,� Altitude, m Images Available from Apogee GHI data available from

a Azusa 34.136 �117.924 187 September 9, 2015 N/A
b Banning 33.921 �116.858 671 September 24, 2015 N/A
c Fontana 34.100 �117.492 363 August 25, 2015 N/A
d Glendora 34.144 �117.850 278 September 9, 2015 April 1, 2017
e Pico Rivera 34.010 �118.069 58 September 17, 2015 April 1, 2017
f Rubidoux 33.999 �117.416 248 September 9, 2015 April 1, 2017
g Santa Clarita 34.383 �118.528 386 September 17, 2015 N/A

Table 6
GHI derivation errors for three sites in the Los Angeles basin.

error matrix Glendora Pico Rivera Rubidoux

MBE [Wm�2] 12.4 �41.2 �10.2
MAE [Wm�2] 41.1 57.6 38.8
RMSE [Wm�2] 59.1 78.9 61.5
rRMSE [%] 11.2 15.3 11.2
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gðdÞ ¼ Var½Zðxþ dÞ� ZðxÞ�; (8)

where the variogram g can be estimated using the known samples:

gðdÞ ¼ 1
NðdÞ

XNðdÞ
i¼1

ðZðxþ dÞ � ZðxÞÞ2; (9)

where N(d) is the number of sample pairs with a distance d.
Theoretically, the increment of the g is finite and will attain a sill. To
minimize the variance:

s20 ¼ E
h
ðẐ0 � Z0Þ2

i
¼ P

i

P
j
wiwjE½ðZi � Z0ÞðZj � Z0Þ�

¼ P
i

P
j
wiwjgðxi � xjÞ þ 2

X
i

wigðxi � x0Þ;
(10)

where xi represent the i � th known site, and the first-order deri-
vation of s20 with respect to each wi equals to zero corresponds to
the minimum condition:X
j

wjgðxi � xjÞ þ l ¼ gðxi � x0Þ; (11)

which can be expressed in matrix form:

Gw ¼ g0; (12)

where G ¼

8>>>><
>>>>:

g11 g12 : g1N 1
g21 g22 : g2N 1
: : : : :

gN1 gN2 : gNN 1
1 1 : 1 0

9>>>>=
>>>>;
, gij ¼ g(xi � xj), w ¼

½w1;w2;…wN; l�T , and g0 ¼ ½gðx1 � x0Þ;…gðxN � x0Þ;1�T . The gij(i,
j¼ 1, 2,…, N) are the variograms between two known sites, and the
g(xi � x0), (i ¼ 1, 2, …, N) are the estimated variograms between a
known site and an investigated site, which is calculated by Eq. (9).
Afterward, the weights w can be calculated as:

w ¼ G�1g0: (13)

4. Model validation

4.1. Validation of derived GHI for individual sites

For the three sites (Glendora, Pico Rivera and Rubidoux) that
have GHI sensors, a MLP model is trained for each site using data
from odd numbered weeks. Then the three MLP models are
assembled as an integrated I2I model to derive GHI for all other
sites where GHI measurements are unavailable. Table 6 presents
the GHI derivation error of the testing set (compared to
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measurements) of the integrated I2I model. The errors for the three
sites are comparable to the errors presented in section 2.3, indi-
cating that the performance of the I2I model is independent of
location.
4.2. Validation of derived GHI field

In this case, the validation is performed following a leave-one-
out approach. For each time instance in the testing set we
compute the irradiance for one of the seven sites by interpolating
the I2I data from the other six sites. The procedure is repeated for
the other sites by leaving the respective data out of the kriging

interpolation. This dataset is denoted as Îkrig .
To strengthen the analysis we also compare the data interpo-

lated for the seven sites against GHI data derived from satellite
imagery. For this purpose, we use data from the Cooperative
Institute for Meteorological Satellite Studies (CIMSS). Using images
from the GOES-West satellite, CIMSS creates cloud fields and irra-
diance maps (among other variables) using the CLAVR-x algorithm
[44]. The CIMSS data is published in real time at the FTP repository
ftp://ftp.ssec.wisc.edu/clavr/goes_west/processed/. From this re-
pository it was possible to obtain CIMSS data for 890 time instances
present in the testing set from April 23 to June 19, 2017. From these
files we extracted GHI data for the seven sites which we denote as

ÎCIMSS.

The accuracy of the whole test set Îkrig1 and the two data subsets

Îkrig2 and ÎCIMSS are assessed by comparing their values against the
I2I data for the seven sites. The error metrics that result from this

analysis are listed in Table 7. For the case of Îkrig , the table shows the
values for the whole testing set and the values for the smaller set
that coincides with CIMSS data. Note that no values are listed for
site e for the smaller set because there were many time instances
the SkyCam did not properly operate to provide image data. Table 7
also lists the distance from the site for which the interpolation is
performed to the nearest site (column “Dist”). The values allow to
directly compare GHI determinedwith kriging from I2I data against
GHI derived from satellite imagery. In summary, the GHI interpo-
lated with kriging from nearby sites is more accurate than satellite-
derived data if the distance to the nearest site is not too large. This
finding is in agreement with results reported by Perez et al. [45]
that defined a z30 km threshold after which solar resource as-
sessments based on satellite techniques are preferable to interpo-
lation. The rRMSE variation with distance is more evident in Fig. 7.

ftp://ftp.ssec.wisc.edu/clavr/goes_west/processed/


Table 7
Error metrics for Îkrig and ÎCIMSS relative to I2I GHI for the seven sites.

Site
Dist MBE MAE RMSE rRMSE

Krig1a Krig2b CIMSSb Krig1 Krig2 CIMSS Krig1 Krig2 CIMSS Krig1 Krig2 CIMSS

a 6.8 �5.3 �12.5 �57.6 28.6 42.6 101.8 52.4 70.8 124.1 9.9 11.6 20.4
b 52.2 41.3 50.1 �25.4 59.5 80.1 105.3 86.5 113.3 176.5 14.6 16.5 25.7
c 13.2 �5.0 �3.6 �24.4 38.7 49.9 75.1 67.6 82.0 101.0 12.1 13.1 16.1
d 6.8 �2.9 �3.2 �62.5 27.6 39.4 106.2 52.1 66.9 126.7 9.8 11.0 20.9
e 19.3 �17.9 �c e 50.2 e e 83.0 e e 15.9 e e

f 13.2 2.2 1.2 �11.9 43.5 56.8 80.9 77.1 92.8 110.6 14.0 14.6 17.4
g 59.2 46.1 51.7 31.6 60.6 73.3 69.1 84.8 107.6 99.5 14.3 15.7 14.5

a Values computed for the whole testing set Îkrig1.
b Values computed for the subset (890 instances) with Îkrig2 and ÎCIMSS .
c I2I GHI data not available for site e for this subset.
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The figure also shows a curve fit for the Îkrig rRMSE variation with
distance (R2 ¼ 0.85).

Finally, Fig. 8 compares GHI maps for a few instances charac-
terized by cloudy weather (top and middle panels) and a single
instance characterized by few clouds (bottom panel). As
mentioned, site e (indicated by a red symbol) is not used to produce

the Îkrig maps. The interpolation region around each site is limited
to a 40 km radius. This value indicates the threshold after which
satellite-derived data is more accurate than interpolated data. It
should be based on a large dataset as done in Perez et al. [45]. Thus,
the chosen value of 40 km, based on results show in Fig. 7, should be
regarded as a preliminary estimate that may change with more
sites and longer dataset.

The red brackets in the figure's colorbars (bottom of the panels)

indicate the GHI range for the two data sets. As expected the Îkrig
shows a much smoother GHI map with lower variability and nar-

rower bounds than ÎCIMSS. This indicates that, if GHI's spatial vari-
ability is more important for resource assessment, than average
GHI values, the satellite-derived data may be preferable to the
kriging GHI. Regardless, these results show that a relatively inex-
pensive network of cameras can provide spatially resolved data that
is more accurate than data that results from the processing of
satellite images, under the condition that the interpolation distance
remains underz40 km. This distance threshold can be changed for
different applications. For instance, Ruiz-Arias et al. [46] showed
that ground stations distributed homogeneously with a spacing of
Fig. 7. rRMSE of Îkrig (blue and black markers) and ÎCIMSS (green markers) with respect to th
testing set (14 212 data points), wheres blue and green markers indicate rRMSE for the subse
different sites. The x-axis indicates the distance to the nearest site. The dashed black line indi
whole testing data) and distance. For the CIMSS GHI data there is no evident trend with d
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100e150 km are able to produce unbiased gridded estimates of
daily GHI.
4.3. Limitations and application potential of the proposed
methodology

Compared with available ground based pyranometers, the ac-
curacy of the proposed method is improvable, particularly for
application of scientific research. But on the other hand, this
method has shown high potential in many real-world applications
such as.

C Solar forecasting systems for distributed PV sites where
forecasting hardware and installation costs must be mini-
mized due to economic constraints.

C Building rooftops usually require complicated procedures to
obtain hardware installation permits due to considerations
of security, safety, water-proof, etc. Cameras are more likely
to obtain the permit as a part of anti-theft systems when
compared with pyranometers and other scientific devices.

C Remotely located solar power sites that need to measure a
number of meteorological data (include but not limited to
cloud base height, clear sky detection, aerosol, cloud cover,
DNI, GHI) but with limited maintenance resources. To
maintain data quality, pyranometers need periodic high
standard calibration, while cameras only need occasional
cleaning of the domes.
e I2I data for the seven sites. The black markers indicate rRMSE obtained for the whole
t in which Îkrig2 and ÎCIMSS are available (890 data points). Different markers indicate the
cates a curve fit (14:96½1� expð � 0:16 dÞ �, R2 ¼ 0.85) between the Îkrig1 rRMSE (for the
istance since it is derived from satellite images.



Fig. 8. GHI maps derived using kriging (left) and obtained from CIMSS (right) for three time instances close to noon (20:00 UTC). Maps are limited to a 40 km radius around
available sites. The colorbar quantifies the GHI color map and the top (bottom) red brackets on the colorbar indicate the GHI range for Îkrig ð̂ICIMSSÞ.
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5. Conclusions

A sky imaging network that utilizes seven off-the-shelf fish-eye
cameras (SkyCam) is deployed in the Los Angeles basin to evaluated
the feasibility of using only imagers to produce intra-hour spatial
solar irradiance assessment. An Image to Irradiance (I2I) model is
proposed to derive ground-level diffuse horizontal irradiance
(DHI), global horizontal irradiance (GHI) and direct normal irradi-
ance (DNI) from the images with constant exposure time. With the
proposed algorithm, off-the-shelf fish-eye cameras with proper
settings can be applied as multi-functional and low-cost alterna-
tives to radiometers for solar irradiance assessments applications
with a little trade-off in measurement accuracy.

With the image-derived GHI from the seven sites in the Los
Angeles basin, a kriging method is used to compute the spatial
irradiance field over the basin. When compared with satellite-
derived irradiance provided by CMISS using GOES-West satellite
data, the kriging interpolated irradiance is generally more accurate
then satellite-derived values when the distance to the nearest site
is under 40 km. This proposed I2I model based imager-only
network is potentially useful to develop short-term spatial solar
irradiance assessment systems with substantially reduced instru-
mental and maintenance costs.

This work aims to develop a model that directly predicts irra-
diance from sky images through end-to-end data learning. In future
work, we could use a cloud detection model to obtain a cloud map
first and then use the unifiedmodel [47] tto calculate the irradiance
to benchmark our proposed methods. Future work will also include
but not limited to performance optimization through considering
more physical constraints, model optimization and assessment
with more data under greater diversity of weather conditions, and
performance evaluation with irradiance derived from images of
remote sensing based systems.
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Appendix A. Evaluation metrics

Commonly applied statistical metrics [27,48] are used to eval-
uate the performance of irradiance derivation and forecast: the
mean biased error (MBE, W/m2),

MBE ¼ 1
K

XK

k¼1
ð̂Ik � IkÞ; (.1)

the mean absolute error (MAE, W/m2),

MAE ¼ 1
k

Xk
k¼1

kbIk � Ik; (.2)

the root mean square error (RMSE, W/m2):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK

k¼1
ð̂Ik � IkÞ2

r
; (.3)

and the relative root mean square error (rRMSE,%),

rRMSE ¼ RMSE

1
.
K
PK

k¼1jIkj
; (.4)

In the above equations, K is the number of time instance in the

dataset, Îk and Ik are the modeled and measured irradiance at time
tk, respectively.
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