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A B S T R A C T

As a crucial component of the model chain, which facilitates irradiance-to-power conversion during solar
resource assessment and forecasting, separation modeling continues to draw attention in both academia and
industry. However, when evaluating even the best separation model today, one can quickly recognize its limited
accuracy compared to other energy meteorology models such as transposition models. The task of separating
global horizontal irradiance into diffuse and beam components does not seem soluble by any derivative effort
aimed at tweaking the existing semi-physical models. As a result, an appealing alternative is to consider end-
to-end data-driven models, which have demonstrated predictive capability in scenarios where the volume of
data is substantial and the interaction among variables is complex. This work discusses the separation of
1-min irradiance from a data-driven perspective. In this preliminary study, a total of 10 representative data-
driven separation models are developed and compared to the state-of-the-art semi-physical models, using a
comprehensive 1-min irradiance database that spans five years and covers numerous climate types. The average
error of the data-driven models is found to be 15.2% to 22.6% lower than that of the semi-physical models
for training locations and 7.9% to 17.6% lower for completely unseen locations. Data-driven models also have
significantly lower standard deviations (up to 87.2% even for completely unseen locations), highlighting their
robustness. In addition, this work provides a guideline for choosing between data-driven and semi-physical
models based on data availability, application needs, computational resources, interpretability, and model
adaptability. Furthermore, the study underscores the challenges in accurately predicting the diffuse fraction
using available input features and indicates that the incorporation of additional weather-related variables and
domain knowledge could enhance the performance of data-driven separation models.
1. Introduction

Separation models, or decomposition models, divide global horizon-
tal irradiance (GHI, 𝐺ℎ) into two additive components: beam horizontal
irradiance (BHI, 𝐵ℎ) and diffuse horizontal irradiance (DHI, 𝐷ℎ). These
models estimate the diffuse fraction 𝑘 using 𝐺ℎ and other geologi-
cal and meteorological parameters, and then, with the estimated 𝑘,
calculate 𝐷ℎ and 𝐵ℎ values via:

�̂�ℎ = �̂� 𝐺ℎ, (1)

𝐵ℎ = 𝐺ℎ − �̂�ℎ. (2)

Abbreviations: BNI, beam normal irradiance; DHI, diffuse horizontal irradiance; GHI, global horizontal irradiance; QC, quality control
∗ Corresponding author.

∗∗ Corresponding author.
E-mail addresses: yangdazhi.nus@gmail.com (D. Yang), mengying.li@polyu.edu.hk (M. Li).

Since BHI is related to the more frequently used beam normal irradi-
ance (BNI, 𝐵𝑛) through the cosine of the solar zenith angle, obtaining
𝐵𝑛 is trivial if 𝐷ℎ or 𝐵ℎ is known, i.e., 𝐵𝑛 = 𝐵ℎ∕ cos(𝑍).

Separation modeling plays a pivotal role in solar resource assess-
ment [1,2] and forecasting [3,4], which are the two most critical do-
mains of solar energy meteorology. For instance, photovoltaic (PV) or
concentrated solar power (CSP) power forecast submission is mandated
by many grid operators [5,6]. However, solar forecasting research pri-
marily focuses on the forecasting of solar irradiance. This underscores
the significance of irradiance-to-power conversion methodologies using
a physical model chain, which is a cascade use of several energy me-
teorology models, where the output of a preceding model serves as the
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input to the next, until the AC power is obtained [7]. Given the fact that
many numerical weather prediction (NWP) models produce just GHI
forecasts, separation models become indispensable for acquiring DHI
and BNI forecasts, thereby enabling PV and CSP power forecasts [8–
10]. Consequently, separation modeling has garnered substantial at-
tention in energy meteorology research and practical applications for
several decades, culminating in an array of over 150 distinct model
options.

Despite the large number of models, they can be collected into two
categories. Physics-based separation models, such as Hollands1 [11]
or Hollands2 [12],1 are exceptionally rare due to the difficulty in
creating an effective surrogate representation of the complex radiative-
transfer process under all-sky conditions. In contrast, a vast majority
of models are semi-physical (or equivalently, semi-empirical), aiming
to establish suitable mathematical relationships between diffuse and
global irradiance components. Semi-physical models offer flexibility,
ease of construction, computational efficiency, and adaptability to lo-
cal irradiance regimes, which jointly explain to a large extent their
popularity.

Surveying the literature, it is evident that several comprehensive
assessments have been conducted regarding the performance of sepa-
ration models. In a pioneering study, Gueymard and Ruiz-Arias [13]
validated 140 models using 1-min data from 54 research-grade ra-
diometry stations, consisting of a total of 25 million quality-controlled
data points. The study identified Engerer2 [14] as the best-performing
model, largely attributed to its innovative consideration of the cloud-
enhancement effect which significantly enhanced its predictive
prowess. Since then, Engerer2 has become a benchmark that subsequent
models aspire to surpass. Later, a comprehensive follow-up review
was conducted by Yang [1]. That review compared 10 major models
proposed after 2016, using an even larger dataset from 126 world-
wide research-grade radiometry stations, encompassing over 80 million
quality-controlled 1-min data points. While several later-introduced
models managed to outperform Engerer2, Yang4 [15] emerged as
the best-performing model. Yang4 employs a novel temporal-cascade
modeling strategy that effectively captures the low-frequency variations
in the diffuse fraction. Given the extensive dataset used by Yang
[1], Yang4 can be confidently regarded as the most accurate 1-min
separation model to date.2

In addition to the incorporation of the cloud-enhancement effect
and low-frequency variation components, much of the success of En-
gerer2 and Yang4 can be attributed to their functional form that is
the logistic function. More precisely, since separation modeling aims to
predict the diffuse fraction (𝑘, the ratio of DHI and GHI, ranging from 0
to 1) using the clearness index (𝑘𝑡, the ratio of GHI and extraterrestrial
GHI, usually ranging from 0 to 1) along with other auxiliary variables,
the logistic function aptly mirrors the shape of the 𝑘𝑡–𝑘 relationship.
Mathematically,

𝑘 = 1
1 + 𝑒𝛽1𝑘𝑡+𝛽0

, (3)

here 𝛽0 and 𝛽1 are the model coefficients that need to be identified
mpirically, i.e., via fitting. Given the univariate nature of Eq. (3),
hich can only model injective relationship (i.e., one-to-one mapping),
oth Engerer2 and Yang4 sought to include additional predictors into
he exponent, such that the non-injective mapping between 𝑘𝑡 and 𝑘
an be better apprehended. Visually, Fig. 1 shows the 𝑘𝑡–𝑘 scatter using
ome sample data collected at Carpentras (44.083◦N, 5.059◦E), France,
longside the predictions made using the logistic function, Engerer2,

1 It is customary in the separation modeling literature to denote a model
y the inventor’s last name in Small Caps; when multiple models are proposed
y the same person, a number is added.

2 In parallel to this work, another work on separation modeling was
ublished by [16], who proposed Yang5, which is not discussed in this paper
2

or brevity. i
nd Yang4. The rule-of-thumb in interpreting plots of this sort is that
he prediction scatter should sufficiently cover the background scatter,
he more precisely covered the better—in this regard, the advantage of
ang4 is immediately evident.

In addition to Engerer2 and Yang4, an expansive array of separation
odels has been proposed, and many of them are also based on

he logistic function. These models incorporate diverse novel adap-
ations, such as regime switching [17] or piecewise modeling [18].
egrettably, as elucidated by the comprehensive reviews of Gueymard
nd Ruiz-Arias [13], Yang [1], none of these semi-physical models
as able to revolutionize separation modeling in terms of accuracy.
or instance, the normalized root mean square error (nRMSE) for
ransposition models, another significant category within the realm
f energy meteorology models, can often descend to as low as a few
ercent [19]. Conversely, the RMSE for separation models rarely falls
elow 10%, with a range of 20%–40% being commonplace. Given
hese observations, it is posited that further modifications of existing
emi-physical models are unlikely to engender considerably greater
uccess than that already achieved by Engerer2 and Yang4. Therefore,
t becomes necessary to explore alternative modeling strategies that
iverge fundamentally from the principles we have grown accustomed
o. Machine learning may well provide such an opportunity.

Applying machine learning (or data-driven) methods to solve engi-
eering problems has long been regarded by the scientific community
s a trivial task. What separates the good applications from those not-
o-good ones is often how well the domain knowledge can be built
nto the data-driven model or whether the construct of the problem
arrants the use of machine learning. The former issue does not arouse

oncern here, since half a century of experience on separation modeling
hould provide a decent amount of domain knowledge in terms of
he provision of input features. (Although many deep-learning models
o not require feature engineering, it is not in conflict with having
eaningful features before learning.) On the other hand, regarding the

onceptual construct, the intuitive linkage between existing logistic-
unction-based modeling and neural networks becomes evident when
cknowledging that the logistic function is analogous to a single-neuron
eural network employing a sigmoid activation function.

The logistic function resembles a single artificial neuron with a
igmoid activation function, which can be mathematically defined as:

= 𝑔(𝑧) = 1
1 + 𝑒−𝑧

, (4)

where 𝑧 is the weighted sum of meteorological inputs, that is,

𝑧 = ℎ(𝒙) =
𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑖, (5)

where 𝑤𝑖 are the weights, 𝑥𝑖 are the features, such as the clearness
index 𝑘𝑡, solar zenith angle, cloud-enhancement quantifier, or the low-
frequency variability index. Therefore, it is intuitively to write Eq. (4)
as a composite function:

𝑘 = 𝑔◦ℎ(𝒙) = 𝑓 (𝒙), (6)

nd develop data-driven models to directly map meteorological input
eatures 𝑥 to 𝑘 using end-to-end learning approaches.

In short, the novelty and contribution of this work encompass
he following three aspects. First, it explores the possibility of em-
loying data-driven models, including advanced deep-learning models,
o develop separation models via end-to-end learning. In comparison
ith conventional semi-physical models, data-driven models present
otable advantages, such as the automatic learning of intricate relation-
hips between input variables and generating predictions, or obviating
he need for manual feature engineering. Second, a comprehensive
valuation of the performance of the 10 representative data-driven
odels is performed and compared against that of 10 state-of-the-art

emi-physical models from the literature, on a comprehensive 1-min

rradiance database covering many climate types. Since separation



Applied Energy 356 (2024) 122434Y. Chu et al.
Fig. 1. One-minute diffuse fraction prediction using the logistic function, Engerer2, and Yang4 models, using data from Carpentras (44.083◦N, 5.059◦E), France, over a period of
one year. Measurements are shown as the gray background, and predictions are shown as colored scatter.
models are often criticized for their low transferability, for models fitted
at one location behave poorly elsewhere, the performance evaluation
is conducted not just at training locations but also at unseen locations.
Third, this work delves into the challenges intrinsic to further enhance
the performance of data-driven approaches in separation modeling.
In that, it contributes to a broader understanding of the capabilities
and limitations of data-driven models within the domain, fostering
confidence in their applicability to real-world challenges.

The results and implications of this work are profound. This study
underscores the significance of adopting contemporary data-driven
techniques within the constantly evolving realm of separation mod-
eling. By showcasing the potential of data-driven methodologies and
elucidating their strengths and weaknesses, this research advocates a
selection guideline between data-driven and semi-empirical models.
In terms of predictive accuracy, the average error of the data-driven
models is found to be 15.2% to 22.6% lower than that of the semi-
physical models on testing datasets from training locations and 7.9%
to 17.6% lower on datasets from completely unseen locations. Data-
driven models also exhibit significantly lower standard deviations (up
to 87.2% even for completely unseen locations), highlighting their
robustness and adaptability. Last but not least, through an in-depth
investigation of the existing challenges, this study aids in pinpointing
areas where additional research and development are requisite for fully
exploiting the potential of data-driven models in separation modeling.
To further enhance data-driven models, recommendations, such as
incorporating domain knowledge, using additional exogenous variables
or features, or ensemble modeling, are made. This inquiry not only
furthers the refinement of data-driven separation modeling but also
contributes to the establishment of best practices and guidelines for
their implementation in the field.

The following pages are divided into five sections. The data used
in this work is introduced in Section 2. Section 3 presents the method-
ology used in this work. The experiment and result are discussed in
Section 4, followed by the conclusions in Section 5.

2. Data

Evaluating separation models, as well as other radiation models, re-
quires access to high-quality, research-grade, ground-based radiometry
data, which has hitherto been limited in availability. The Baseline Sur-
face Radiation Network (BSRN) is the largest and most prominent net-
work of radiometry stations, comprising about 60 active stations [20].
In addition to BSRN, there are smaller networks managed by indepen-
dent organizations, such as the Bureau of Meteorology (Australia), the
National Renewable Energy Laboratory (United States), or the Southern
African Universities Radiometric Network (South Africa and several
neighboring countries). Recognizing the need for comprehensive data,
3

members from the International Energy Agency (IEA) PVPS Task 16
Activity 1.4 have collected and compiled several years of data from a
total of 126 sites to support various solar energy meteorology research
endeavors [21]. All of these stations employ thermopile pyranome-
ters for 𝐺ℎ and 𝐷ℎ measurements and tracker-mounted thermopile
pyrheliometers for 𝐵𝑛 measurements, adhering to the recommended
radiometry standards and undergoing regular calibration.

Due to propriety reasons and the constraints of available computa-
tional resources, this study employs 1-min data from 12 selected sites
(as shown in Fig. 2), spanning five years from 2015 to 2020. Among
these sites, seven are utilized for both model training and validation,
while the remaining five sites in a different continent are reserved
exclusively for model assessment in order to evaluate the performance
of the models under unseen data instances. This approach ensures
a comprehensive and rigorous evaluation of the models, taking into
account their adaptability and generalization capabilities, which are
critical aspects of academic research and real-world applications.

To ensure the utilization of the highest-quality data for comparison
purposes, a stringent quality control (QC) process, including both auto-
matic tests and manual screening, was implemented and carried out by
the IEA members, as described by Forstinger et al. [21]. The entire QC
process can be divided into four distinct quantitative stages, with each
stage comprising several filters or tests. Specifically, if a data point fails
to pass any of the tests, it is flagged and subsequently excluded from
further analysis. Conversely, if a data point successfully passes all tests,
or when the tests cannot be performed due to inapplicable conditions,
it is considered ‘‘usable’’ for the analysis. This rigorous approach to
data quality management ensures that the data entering the models is
reliable and contributes to the validity of any conclusion made. More
details of the QC process can also be found in [1]. In addition, two
more filters are employed in this work: (1) discarding data instances
when 𝑍 > 85◦, and (2) discarding data instances when 𝐺ℎ, 𝐵𝑛, 𝐷ℎ < 0.
This is due to the significant errors in both the radiometry data and
various separation models under low-sun conditions [13].

3. Methodology

3.1. Problem formulation

The hypothesis of this work is that data-driven models, utilizing
meteorological inputs, can be employed to separate global horizontal
irradiance into its diffuse and beam components. In the training phase,
let 𝑥𝑖𝑗 denote an input feature, with 𝑖 = 1,… , 𝑛 indexing the training
samples and 𝑗 = 1,… , 𝑚 indexing the features, such as the solar zenith
angle or clearness index, see Table 1 for a list. Thus, for the 𝑖th sample,



Applied Energy 356 (2024) 122434Y. Chu et al.

̂

̂

Fig. 2. The geographical distribution of 12 selected sites (triangle symbols) within the most up-to-date Köppen–Geiger climate classification system [22].
one can write the vector 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑚). When all 𝑛 samples are
framed into a matrix, one has

𝑿 =
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⎞

⎟

⎟

⎟

⎟

⎠

, (7)

which is the feature matrix that is to be used for training. The target
vector is a length-𝑛 vector holding the corresponding diffuse fractions,
that is,

𝒌 =
(

𝑘1,… , 𝑘𝑛
)⊤ . (8)

With the above notation, the objective of this work is to develop end-
to-end separation models, denoted as 𝑓 , such that the diffuse fraction
at a future index 𝑛 + 1 can be predicted by the corresponding input at
that index, that is,

𝑘𝑛+1 = 𝑓 (𝒙𝑛+1|𝑿;𝜽), (9)

where 𝜽 denote a vector of model parameters. Once �̂�𝑛+1 is esti-
mated, the prediction of 𝐷ℎ and 𝐵𝑛 follows. Mathematically, �̂�ℎ,𝑛+1 =
𝑘𝑛+1𝐺ℎ,𝑛+1 and 𝐵𝑛,𝑛+1 =

(

𝐺ℎ,𝑛+1 − �̂�ℎ,𝑛+1

)

∕cos𝑍𝑛+1.
In constructing various versions of 𝑓 (i.e., different data-driven

models), four assumptions/notes are made. First, it is assumed that
the models are representative in terms of their predictive mechanisms
and the data is representative in terms of its spatio-temporal coverage.
Second, the parameter estimation of data learning models, such as
neural network models, may involve elements of randomness; this work
assumes that the influence of this randomness on the final prediction
is minor. That said, it is noted that most data-driven models in this
work, such as k-nearest neighbors (kNN) and extreme gradient boosting
(XGBoost), are expected to converge to the same parameter set and
produce identical predictions on the same test dataset. Third, the
data measurement uncertainty is assumed to be negligible, in that,
the ground-based measurements are used as the truth, against which
model predictions are verified. Fourth, it is noted that the nRMSE is
sufficient for model evaluation, as it can be decomposed into a series
of error statistics, which jointly gauge the quality of predictions—
this is what the Murphy–Winkler verification framework suggests. On
4

this point, other metrics such as the mean absolute error (MAE) are
redundant, and using both RMSE and MAE violates the statistical theory
of consistency [23,24].

3.2. Benchmark separation models

Here, we select 10 state-of-the-art separation models of different
types—see Yang [1] for their formulation. These 10 models are to
be used as the benchmark models to evaluate the performance of the
data-driven models of concern. Input parameters for all considered
separation models are summarized in Table 1. As can be seen, different
models take different input parameters, whereas 𝑘𝑡 is employed as
an essential input by all models. In the following paragraph, a brief
justification for the choice of these 10 models is offered.

Starting from Engerer2 [14], this model is selected because it has
won the separation modeling ‘‘contest’’ conducted by Gueymard and
Ruiz-Arias [13] in 2016, and has since been used as a benchmark
for almost all subsequent proposals of separation models. Whereas the
model parameters of Engerer2 were fitted using Australia data, Bright
and Engerer [25] refitted the parameters using a more comprehensive
dataset, resulting in Engerer4, which is a ‘‘world’’ version of Engerer2.
Starke1 and Starke2 [18] typify the piecewise modeling technique in
separation modeling, in that, the inventors introduced a piecewise
model that distinguishes between conditions with and without cloud
enhancement. Since both Starke1 and Starke2 are based wholly on the
BRL model [26], the BRL model is also used as a benchmark. Moving
on to Abreu, it is a univariate model proposed very recently. Although
the performance of Abreu lags most of the other benchmarks due to
its univariate nature, it is considered here because it has possibly the
best performance amongst the univariate separation models. Whereas
Paulescu [27] represents a regression-based modeling philosophy, Ev-
ery1 and Every2 [17] represent the climate-based modeling philosophy.
In the case of the form, the separation model is viewed as a regression
problem, and the authors adopted a linear model with indicator func-
tions for that purpose. In the case of the latter, Every2 employs the BRL
model as the basic function form, but fits one set of coefficients for each
major climate type of concern. Last but not least, Yang4 [15] has won
the ‘‘contest’’ conducted by Yang [1] and is the best separation model
to date, as such it has to be included.
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Table 1
Various input parameters as required by different separation models.

Parameter Calculation method Interpretation Engerer2
Engerer4

Starke1 Starke2
BRL

Abreu Paulescu Every1
Every2

Yang4 Data-
driven

𝐸0 Computed via solar
positioning

Extraterrestrial GHI [W/m2] ▵

𝐺ℎ Obtained by local
measurements

GHI [W/m2] ▵

𝐺csky McClear clear-sky model Clear-sky GHI [W/m2] ▵ ▵

𝑍 Computed via solar
positioning

Solar zenith angle [◦] ▵ ▵ ▵

𝛼 90◦ −𝑍 Solar elevation angle [◦] ▵ ▵

AST Computed via solar
positioning

Apparent solar time ▵ ▵ ▵ ▵

𝑘𝑡 𝐺ℎ∕𝐸0 Clearness index ▵ ▵ ▵ ▵ ▵ ▵ ▵

𝑘𝑡,daily Averaging 𝑘𝑡 over a day Low-frequency 𝑘𝑡 signal, a form
of variability index

▵ ▵ ▵

𝜓 Three-point moving
average of 𝑘𝑡

Low-frequency 𝑘𝑡 signal, a form
of variability index

▵ ▵

𝛥𝑘𝑡𝑐 𝑘𝑡𝑐 − 𝑘𝑡 Difference between clearness
index of the clear-sky GHI
(𝑘𝑡𝑐 = 𝐺csky∕𝐸0) and clearness
index

▵ ▵ ▵

𝑘𝑒 max
(

0, 1 − 𝐺csky∕𝐺ℎ
)

Portion of the diffuse fraction
that is attributable to cloud
enhancement events

▵ ▵ ▵

𝑘csi 𝐺ℎ∕𝐺csky Starke’s quantifier for cloud
enhancement

▵

𝑘Engerer2hourly Applying Engerer2 on
hourly 𝐺ℎ

Hourly diffuse fraction estimated
from Engerer2

▵

𝑐𝑐clim Acquired from database Cloud frequency climatology ▵

𝑎𝑜𝑑clim Acquired from database Aerosol optical depth climatology ▵

𝑎𝑏𝑑clim Acquired from database Albedo climatology ▵
h
b
a
c
c
f
d
p
s
d
p
s
i
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3.3. End-to-end data-driven models

In this work, data-driven separation models are proposed and de-
veloped, to predict the diffuse fraction 𝑘 using a range of popular
machine-learning techniques. These techniques enable capturing the
complex, nonlinear relationships between input features and the target
variable, thereby potentially enhancing the accuracy of separation.
Here, a total of 10 representative methods are used to build end-
to-end data-driven models that can learn features from existing data
and then adapt to different locations with or without new training
data. By leveraging the strengths and mitigating the weaknesses of
each method, the present setup aims to identify a comprehensive and
robust data-driven separation model. The choice of these methods is
motivated by their ability to handle different aspects of the problem,
such as dealing with noisy data, capturing non-linear relationships, and
providing interpretability. Details about the selected 10 methods are
presented in Appendix.

Based on the thorough review of state-of-the-art semi-physical sep-
aration models in the literature, a total of 11 essential input features
are selected for developing the data-driven models. The selected input
features are summarized in Table 1. Among the 11 input features,
eight are commonly used in semi-physical separation models, while the
remaining three features are climatology variables, namely cloud fre-
quency climatology (𝑐𝑐clim), aerosol optical depth climatology (𝑎𝑜𝑑clim)
nd albedo climatology (𝑎𝑏𝑑clim). The climatology variables are ob-
ained based on their importance to surface radiation. Cloud is the
ost important factor affecting the transmission of irradiance down to

he earth’s surface, therefore, cloud climatology data employed in this
ork comes from Wilson and Jetz [28]. Right next to clouds, the next-

mportant atmospheric constituent that influences the surface radiation
s aerosol, as such the aerosol optical depth (AOD) product merged
rom several major AOD databases by Yang and Gueymard [29] is
5

erein selected. Last but not least, surface albedo, which controls the
ackscattering process, is selected as the third climatology variable,
nd its source is the ERA5 reanalysis Hersbach et al. [30]. All three
limatology databases cover the entire world, and the pixel values
ollocated with the ground-based stations used in this work are elicited
rom the corresponding climatology maps. Most input features for the
ata-driven separation model can be derived or obtained from NWP
roducts. Only the surface albedo, which has low inter-day and inter-
eason variability, is obtained from climatology data. Therefore, all
ata can be easily obtained or estimated, which could ensure the ap-
licability of the data-driven models. Note that each feature undergoes
tandardization via the Z-score normalization method before being
nputted into the data-driven models.

.4. Evaluation of model performance

The performance evaluation of the data-driven and benchmark mod-
ls involves a two-stage process utilizing data from 12 sites. The first
tage is model development and validation using data from seven North
merican sites (BON, BOU, DES, FOP, GOO, ROS, SIO). Here, 70% of

he data is allocated for training and 30% for testing. The second stage
s for model transferability assessment, using data from five European
ites (CAB, CAR, CEN, PAL, PAY), which are solely for model testing at
nseen sites. This strategy ensures the models are robust against me-
eorological variations across different regions. For evaluation at both
tages, the estimated diffuse fraction is then converted to corresponding
iffuse and beam normal irradiance values for calculating the error
etrics between the model estimated and measured irradiance. The
rimary performance metric is nRMSE, complemented by prediction
kill metrics for a comprehensive comparison between data-driven and
emi-physical models. Additionally, the Murphy–Winkler factorizations
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are employed to provide an extensive examination of the prediction and
observation distributions, offering a holistic view of prediction quality.

The nRMSE is used as the main metric to assess and compare the
performance of 𝐷ℎ and 𝐵𝑛 estimated by all models. The nRMSE is
alculated as:

RMSE =

√

1
𝑛
∑𝑛
𝑖=1

(

𝐼𝑖 − 𝐼𝑖
)2

1
𝑛
∑𝑛
𝑖=1 𝐼𝑖

, (10)

here 𝑛 is the number of observation instances, 𝐼 and 𝐼 represents the
stimated and observed values (either 𝐷ℎ or 𝐵𝑛), respectively.

The use of normalized metrics provides several advantages in this
ontext. First, normalized metrics facilitate a fair comparison between
odels by accounting for variations in the magnitude of the target

ariable across different datasets or locations. By scaling the errors
ith respect to a baseline, such as the mean value of the target
ariable, the error metrics are dimensionless and become comparable
cross different scenarios. In addition, normalized metrics allow for a
ore intuitive interpretation of the results, as they provide a relative
easure of the performance of the model. By expressing the errors as a
ercentage or fraction of a baseline value, the degree of deviation from
he actual target values can be easily gauged.

Besides calculating the errors for individual models, it is also of
nterest to know the overall performance comparison between data-
riven and semi-physical models. On this point, a method that can
ompare the two classes of models in an aggregated fashion is needed.
he concept of prediction skill is considered for that matter. This
oncept encompasses three aspects: mean, standard deviation, and the
est nRMSE. The prediction skills of those three kinds are defined
athematically as follows:

mean = 1 −
∑

𝑖 nRMSE𝑖d
∑

𝑖 nRMSE𝑖b
, (11)

deviation = 1 −

√

√

√

√

√

∑

𝑖
(

nRMSE𝑖d −
∑

𝑖 nRMSE𝑖d∕𝑁
)2

∑

𝑖
(

nRMSE𝑖b −
∑

𝑖 nRMSE𝑖b∕𝑁
)2
, (12)

𝑠best = 1 −
min

(

nRMSE𝑖d
)

min
(

nRMSE𝑖b
)
, (13)

here 𝑁 is 10, representing the number of models, nRMSE𝑖d and
RMSE𝑖b represent the nRMSE of the 𝑖th data-driven model and the 𝑖th
enchmark model, respectively.

The last component of the verification exercise pertains to the
urphy–Winkler factorizations [31]. In evaluating point predictions,

ne often focuses just on the accuracy, which is but one aspect of pre-
iction quality. Other aspects of quality include association, calibration,
efinement, and discrimination, among others. In this regard, Murphy
nd Winkler [31] proposes to examine the joint distribution of pre-
iction and observation, which contains all information relevant to
rediction. Furthermore, since the joint distribution can be decomposed
nto marginal and conditional distributions, those are also scrutinized.
he Murphy–Winkler verification framework was first introduced to
olar engineering by Yang and Perez [32], and was subsequently ad-
ocated by a group of 33 energy meteorologists [24]. Ever since, the
ramework has gained much popularity, and has been applied to a
ide range of energy meteorology problems [e.g., 29,33–35]. In this
ork, the formal introduction of the Murphy–Winkler factorizations is
ot reiterated, and the reader is referred to the aforementioned works
or details. However, we should give the necessary information as the
erification exercise progresses.

. Results and discussion

.1. Model assessment at locations with training data

The evaluation of the model performance at the seven locations used
6

or training is presented in Table 2—the evaluation is performed on
he remaining 30% data at these locations. The results indicate that
he mean and best performance of data-driven models for estimating
oth 𝐷ℎ and 𝐵𝑛 is markedly superior to those of the benchmark models.
n particular, the relative improvement in the average nRMSE of data-
riven models compared to benchmark models ranges from 14.9%
o 20.6% for 𝐷ℎ, and from 17.3% to 22.6% for 𝐵𝑛 across the seven
ites. When comparing the best-performing models from the two groups
Yang4 and XGBoost), the relative improvement of XGBoost in terms of
RMSE ranges from −1.4% to 8.9% for 𝐷ℎ and from 2.8% to 16.1% for
𝑛 across the seven sites. The majority of data-driven models consis-

ently outperform the average performance of benchmark models. This
uperior performance can be attributed to the adaptability and capa-
ility of data-driven models to learn complex, non-linear relationships.
n contrast, benchmark models often rely on pre-defined assumptions
r relationships, which may constrain their capacity to capture the
ntricacies of the data, ultimately resulting in higher variation among
odels. The standard deviation among data-driven models is notably

ower than that of the benchmark models. This observation suggests
hat data-driven models are effective in learning the inherent data
atterns, leading to similar performance levels. More specifically, these
ata-driven models may identify congruent relationships between input
ariables and the target variable, indicating that they exploit distinct
spects of the data while converging on a comparable underlying
tructure. This consistency in data patterns across different models
llows each model to achieve a similar level of accuracy. In conclusion,
hen training data is available, data-driven models exhibit significant
dvantages over the semi-physical benchmarks in estimating both 𝐷ℎ
nd 𝐵𝑛 in the context of irradiance separation.

.2. Model assessment at unseen locations

The performance of the models at unseen locations is presented
n Table 3. For these locations, the advantage of data-driven models
ver benchmark models persists, albeit with a noticeable reduction.
pecifically, data-driven models generally outperform the majority of
enchmark models in terms of average nRMSE for estimating both 𝐷ℎ
nd 𝐵𝑛. The relative improvement of average nRMSE of data-driven
odels over benchmark models ranges from 7.9% to 17.6% for 𝐷ℎ and

from 12.4% to 17.5% for 𝐵𝑛 across the five unseen sites. In a similar
vein to locations with training data, the standard deviation of data-
driven models is significantly lower than that of the benchmark models.
However, for the best-performing models, the relative improvement
of nRMSE of data-driven models over benchmark models ranges from
−12.2% to 0.3% for 𝐷ℎ and −8.8% to −0.1% for 𝐵𝑛 among the five
ites. These observations suggest that data-driven models may exhibit a
arginal degree of overfitting, leading to increased error when estimat-

ng for sites without training data. This outcome can be attributed to
he inherent complexity of the models and their propensity to capture
oise in the training data, which may not generalize well to previously
nseen locations.

.3. Murphy–Winkler verification of the top performers

In this study, a wide range of models have been evaluated. The
ollowing part concentrates on a detailed comparison between the
wo top performers, one of the data-driven models and the other of
enchmark models, namely, LightGBM and Yang4. The comparison is
erformed at the five unseen locations, in terms of the diffuse fraction
. It is important to note that the differences among the top data-
riven models, such as ANN, kNN, XGBoost, or LightGBM, are relatively
inor. Further analysis confirms the similarity in performance among

hese top-performing data-driven models.
By selecting this pair of models, we showcase the best overall

erformance for both data-driven and benchmark categories. To enable
comprehensive examination of their predictive capabilities, a series

f illustrative figures are presented following the recommendation
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Table 2
Comparisons of nRMSE (%) for estimating 𝐷ℎ (left) and 𝐵𝑛 (right) at locations with training data. E denotes the expectation, which applies to both 𝐷ℎ or 𝐵𝑛 and has a unit of
W/m2. The mean, standard deviation, and best (i.e, smallest) nRMSE values among the 10 benchmark and the 10 data-driven models are also presented. In the last three rows,
the three skill scores (%) introduced in Section 3.4 are displayed.

nRMSE of 𝐷ℎ predictions nRMSE of 𝐵𝑛 predictions

BON BOU DES FOP GOO ROS SIO BON BOU DES FOP GOO ROS SIO

E (W/m2) 161 138 112 133 161 169 146 561 636 739 568 558 519 560

Engerer2 42.3 39.0 34.6 37.1 40.1 43.3 38.3 16.4 16.4 15.0 17.1 14.6 16.4 16.2
Engerer4 47.2 43.2 38.7 40.2 46.1 49.1 42.3 18.4 18.2 15.5 18.1 16.8 18.6 17.5
Starke1 39.7 37.8 30.9 35.6 36.8 40.0 36.4 15.9 15.9 12.9 16.8 13.4 15.3 15.9
Starke2 46.7 43.6 36.1 40.2 39.8 46.5 42.2 18.9 18.7 15.4 19.3 14.6 17.9 18.8
BRL 52.2 53.5 41.8 46.2 49.4 55.7 47.9 20.8 23.2 17.5 21.5 18.0 21.2 20.5
Abreu 47.9 48.1 41.1 42.4 45.9 49.7 44.2 19.6 20.1 17.0 20.0 18.8 19.7 19.2
Paulescu 41.3 40.8 33.9 38.0 37.4 41.8 38.6 17.2 17.9 14.5 18.2 15.0 16.8 17.2
Every1 60.5 60.8 48.0 51.2 57.3 64.3 53.5 23.4 25.7 19.8 23.5 20.5 23.9 22.6
Every2 60.5 53.5 41.8 51.7 57.2 62.8 47.9 23.3 23.2 17.5 23.9 20.3 23.9 20.5
Yang4 37.3 35.6 29.2 33.3 34.3 38.0 33.5 14.9 15.4 13.3 16.2 12.8 14.7 14.8

Mean 47.6 45.6 37.6 41.6 44.4 49.1 42.5 18.9 19.5 15.8 19.5 16.5 18.8 18.3
Deviation 8.1 8.1 5.7 6.3 8.2 9.2 6.1 2.9 3.5 2.1 2.7 2.8 3.3 2.4
Best 37.3 35.6 29.2 33.3 34.3 38.0 33.5 14.9 15.4 12.9 16.2 12.8 14.7 14.8

MLR 43.8 41.3 35.4 40.5 42.5 44.7 42.2 17.2 17.4 14.7 18.3 15.5 17.2 17.8
QPR 38.7 36.3 30.9 34.3 37.2 40.0 36.0 15.1 15.1 12.6 15.4 13.4 15.3 14.9
DT 38.9 36.2 30.4 33.8 37.7 40.4 35.8 15.3 15.0 12.4 15.3 13.7 15.5 14.9
RF 38.6 35.9 30.2 33.6 37.3 40.1 35.5 15.1 14.9 12.3 15.2 13.5 15.3 14.8
GB 40.1 36.5 30.7 34.8 38.6 41.5 36.4 15.5 15.1 12.5 15.6 14.1 15.8 15.1
Light GBM 38.1 35.4 30.0 33.4 36.6 39.3 35.3 14.9 14.7 12.2 15.0 13.2 15.1 14.6
XGBoost 35.6 32.8 27.7 30.4 34.8 36.6 32.5 13.9 13.7 11.4 13.6 12.5 13.9 13.4
SVR 39.9 37.7 33.2 37.1 39.2 40.6 38.5 15.7 15.8 13.7 16.6 14.4 15.6 16.1
kNN 38.2 35.2 29.7 33.0 36.9 39.4 35.2 14.9 14.7 12.1 14.9 13.3 15.1 14.5
ANN 37.0 34.5 29.1 31.9 35.8 38.2 34.0 14.5 14.3 11.8 14.3 12.9 14.6 14.0

Mean 38.9 36.2 30.7 34.3 37.7 40.1 36.1 15.2 15.1 12.6 15.4 13.6 15.3 15.0
Deviation 2.2 2.2 2.2 2.8 2.1 2.1 2.6 0.9 1.0 1.0 1.3 0.8 0.8 1.2
Best 35.6 32.8 27.7 30.4 34.8 36.6 32.5 13.9 13.7 11.4 13.6 12.5 13.9 13.4

𝑠mean 18.2 20.6 18.3 17.6 15.2 18.4 14.9 19.4 22.6 20.6 20.8 17.3 18.6 18.3
𝑠deviation 73.1 72.9 62.5 55.6 74.0 76.8 56.8 70.0 71.8 54.7 52.8 69.8 74.5 50.9
𝑠best 4.5 8.0 5.1 8.9 −1.4 3.9 3.1 7.2 11.1 11.8 16.1 2.8 5.4 9.6
t
a
t
p
c
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of Murphy and Winkler [31] and Yang et al. [24], including marginal,
joint, and conditional distribution plots of observed and estimated
diffuse fractions. The subsequent discussion offers valuable insights
into the strengths and weaknesses of these elite models, illuminating
their relative advantages and the factors contributing to their superior
performance.

4.3.1. Verifying the marginal distributions
Fig. 3 presents the marginal distributions of predicted and observed

diffuse fractions for both top performers. The distribution patterns of
the observed and predicted diffuse fractions for both models across
training and testing sets exhibit a similar bimodal distribution. This
distribution arises from two-state weather conditions, with clear-sky
periods (minimal cloud cover) corresponding to lower diffuse fractions
and cloudy periods (significant cloud cover) corresponding to higher
diffuse fractions, resulting in one peak near 0.2 and another close to 1,
respectively.

Upon closer examination of Fig. 3, the two peaks of the distributions
for both LightGBM and Yang4 predictions have shifted from those of
the observations. The peak near 0.2 shifts rightward, and the peak
near 1 shifts leftward, a tendency especially pronounced during cloudy
periods where the diffuse fraction is close to 1. This phenomenon can
be attributed to the conservative prediction tendency of data-driven
models that aim to minimize statistical metrics like the mean square
error (MSE). By avoiding extreme predictions, these models reduce
the likelihood of significant errors, albeit sometimes at the expense of
prediction accuracy. When comparing the two models, the distribution
of Yang4’s predicted 𝑘 is better aligned with the observations than the
LightGBM model, particularly during the cloudy period when 𝑘 is close
to 1.
7

u

Fig. 3. Marginal distributions of predicted and observed 𝑘 using LightGBM and Yang4
when evaluated at the five locations without training data.

4.3.2. Verifying the joint distributions

To examine the distribution of predictions from both models in
greater detail, the joint distributions of the observed and predicted
diffuse fraction, for both LightGBM and Yang4, are plotted in Fig. 4. On
he top and right margin of the sub-figures, the marginal distributions
re again shown in the form of histograms for information. Both models
end to slightly over-predict 𝑘 when 𝑘 is smaller than 0.5 and under-
redict 𝑘 when 𝑘 is larger than 0.5. The joint distribution of the Yang4
ase demonstrates better alignment along the diagonal than that of the
ightGBM model, particularly for large 𝑘 conditions, which in turn ex-
lains its smaller statistical errors. However, a common challenge for all
odels, regardless of the availability of training data, is the prediction
nder partially cloudy conditions when measured diffuse fractions are
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Table 3
Comparisons of nRMSE (%) for estimating 𝐷ℎ (left) and 𝐵𝑛 (right) at locations without training data. E denotes the expectation, which applies to both 𝐷ℎ or 𝐵𝑛 and has a unit of

/m2. The mean, standard deviation, and best (i.e., smallest) nRMSE values among the 10 benchmark and the 10 data-driven models are also presented. In the last three rows,
he three skill scores (%) introduced in Section 3.4 are displayed.

nRMSE of 𝐷ℎ predictions nRMSE of 𝐵𝑛 predictions

CAB CAR CEN PAL PAY CAB CAR CEN PAL PAY

E (W/m2) 156 125 147 177 139 308 610 553 404 631

Engerer2 34.4 33.9 37.3 39.7 36.5 18.7 19.0 19.7 21.2 19.7
Engerer4 39.5 38.9 42.6 44.4 40.9 22.2 21.7 22.6 24.2 22.3
Starke1 28.6 30.6 34.6 34.1 37.6 16.4 17.0 18.3 18.8 20.2
Starke2 33.8 31.8 39.1 40.1 45.1 19.0 17.5 20.5 22.2 24.7
BRL 43.3 39.9 48.3 50.3 48.4 24.2 22.7 25.5 27.2 26.2
Abreu 38.0 40.5 44.5 44.2 42.1 22.1 25.6 25.1 24.8 24.1
Paulescu 30.2 33.4 37.3 35.0 40.0 18.2 20.4 20.7 20.1 21.9
Every1 49.1 41.8 53.1 57.2 55.4 26.9 24.4 27.9 30.3 29.4
Every2 49.4 42.2 52.2 56.9 53.5 27.6 25.5 28.0 30.7 29.2
Yang4 28.9 28.0 31.8 33.8 34.7 16.2 16.5 17.3 18.5 18.9

Mean 37.5 36.1 42.1 43.6 43.4 21.1 21.0 22.6 23.8 23.7
Deviation 7.8 5.1 7.3 8.8 7.1 4.1 3.5 3.9 4.5 3.8
Best 28.9 28.0 31.8 33.8 34.7 16.2 16.5 17.3 18.5 18.9

MLR 36.1 36.7 41.3 41.3 38.3 20.4 19.5 21.3 22.5 20.6
QPR 34.3 32.5 37.2 38.8 36.6 18.9 17.5 19.0 20.9 19.8
DT 32.4 32.7 35.4 37.9 35.1 18.3 18.0 18.8 20.7 19.2
RF 32.2 32.3 35.1 37.6 34.7 18.1 17.8 18.6 20.6 19.0
GB 33.0 33.1 35.8 37.9 34.6 18.4 18.6 19.2 20.5 19.0
Light GBM 31.6 32.4 34.6 37.6 34.6 17.7 17.4 18.3 20.6 19.0
XGBoost 32.9 32.1 36.2 38.6 36.9 18.6 17.3 19.0 21.0 20.1
SVR 32.4 35.7 38.3 37.9 35.6 18.4 18.6 19.7 21.2 19.8
kNN 32.4 31.5 35.5 37.9 36.2 18.3 17.0 18.7 20.6 19.8
ANN 32.2 33.5 36.0 37.5 34.9 17.6 18.3 18.9 20.0 18.9

Mean 33.0 33.3 36.5 38.3 35.8 18.5 18.0 19.1 20.9 19.5
Deviation 1.3 1.7 2.0 1.1 1.2 0.8 0.7 0.8 0.6 0.6
Best 31.6 31.5 34.6 37.5 34.6 17.6 17.0 18.3 20.0 18.9

𝑠mean 12.2 7.9 13.1 12.1 17.6 12.6 14.4 15.2 12.4 17.5
𝑠deviation 83.0 67.3 73.0 87.2 82.5 81.5 78.5 78.3 85.7 84.4
𝑠best −10.4 −12.2 −8.7 −11.1 0.3 −8.8 −3.1 −5.8 −8.3 −0.1
Fig. 4. Joint and marginal distributions of observed and predicted 𝑘 using (a) LightGBM and (b) Yang4 when evaluated at the five locations without training data. The contour
lines show the 2D kernel densities.
around 0.5. Here, the models exhibit a highly dispersed distribution
away from the diagonal, reflecting the high variability of the cloud field
during such conditions. This demonstrates that accurately separating
solar irradiance under partially cloudy conditions remains a significant
challenge, irrespective of the model used or the availability of training
data.
8

4.3.3. Verifying the conditional distributions
In addition to the joint and marginal distributions, Fig. 5 presents

the conditional distributions to investigate the conditional dependence
between prediction and observation. Fig. 5(a) and (c) correspond to the
observation conditional on prediction, and Fig. 5(b) and (d) correspond
to the prediction conditional on observation. It can be seen from
Fig. 5(b) and (d) that both models tend to overestimate at the lower
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Fig. 5. Conditional distributions of observed and predicted 𝑘 when evaluated at the five location without training data. 𝑓 (𝑦|𝑥) are shown in (a) and (c) for LightGBM and Yang4,
espectively. 𝑓 (𝑥|𝑦) are shown in (b) and (d) for the two models, respectively.
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range and underestimate at the higher 𝑘 range. Fig. 5(a) and (c),
n the other hand, reveal that local distribution maxima of LightGBM
stimations align better with the diagonal line than Yang4 when 𝑘 <
.15 or 𝑘 > 0.95. However, Yang4 demonstrates better alignment when
.15 < 𝑘 < 0.35 or 0.75 < 𝑘 < 0.95. A common observation across
oth models is the relatively flat probability density around 𝑘 values of
.5, indicating larger prediction errors. This pattern again highlights
he challenges of estimating diffuse fractions under partially cloudy
onditions, a difficulty that persists regardless of the availability of
raining data.

This analysis that compares the top-performing data-driven model
nd the benchmark model offers valuable insights into their respective
trengths and weaknesses. The detailed exploration of their perfor-
ance under different conditions can inform future research and model
evelopment in the field of solar irradiance separation. By understand-
ng the specific areas where these models excel or fall short, we can
arget improvements to enhance their effectiveness, with the ultimate
oal of furthering the practical utility of these models in the renewable
nergy sector.
9

e

.4. Discussion of results

The analysis of performance for data-driven models reveals an
nteresting insight related to 𝐷ℎ and 𝐵𝑛 predictions: There is a strong
orrelation between the performance of 𝐷ℎ and 𝐵𝑛 predictions, par-
icularly for locations with training data. This suggests that a model
roficient at predicting 𝐷ℎ for a specific site is also likely to excel at
redicting 𝐵𝑛 at the same site. This correlation can be attributed to the
losure relationship between 𝐷ℎ, 𝐵𝑛, and 𝐺ℎ, i.e., 𝐺ℎ = 𝐷ℎ + 𝐵𝑛 cos𝑍.
s the predictand 𝑘 is the ratio of 𝐷ℎ to 𝐺ℎ, and the inter-dependence of

he three irradiance components implies that the performance of a sep-
ration model in predicting one variable directly affects its performance
n predicting the other.

Next, among all data-driven models, MLR generally exhibits high
RMSE values, likely due to its assumption of linearity. The relationship
etween the meteorological inputs and the output diffuse fraction is
nherently nonlinear, causing MLR to struggle in accurately modeling
his association and resulting in increased prediction errors. Mod-
ls capable of establishing nonlinear mathematical mappings, such as
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LightGBM, kNN, or ANN, exhibit similar behavior in terms of nRMSE.
It is important to note that the performance differences between the
top models and their closest competitors are just marginal, emphasizing
their comparable nature. This comparability among data-driven models
indicates their proficiency in capturing underlying data structures and
patterns, leading to consistent predictive accuracy.

Moreover, as observed in Fig. 3, both the observation and prediction
sets exhibit similar distributions with bimodality. Upon examining the
predictions made by the models, it is evident that all models tend to
draw the two peaks closer together, with the peak near 𝑘 = 0.2 shifting
rightward and the peak near 𝑘 = 1 shifting leftward. As discussed ear-
lier, this observation can be attributed to the fact that machine-learning
models often predict conservatively in order to minimize statistical
metrics such as MSE. By avoiding extreme predictions, these models
can reduce the risk of incurring large errors, even if this strategy leads
to less accurate predictions in some instances. In a statistical sense,
MSE-optimized predictions models are necessarily under-dispersed, as
mathematically proven by Mayer and Yang [23]. Another reason for
the described misalignment is likely due to the misidentification of the
sky conditions. One intuitive approach to addressing the observed issue
involves dividing the data into clear and cloudy subsets, e.g., based on
the ranges of the clear-sky index, and then developing separate models
tailored to each weather condition. This piecewise modeling strategy
has been employed by Starke et al. [18], but not here.

To assess the above hypothesis, four scatter plots as shown in
Fig. 6 are examined. In these plots, the diffuse fraction is on the 𝑦-
axis and various input features, namely GHI (𝐺ℎ), solar zenith angle
(𝑍), clearness index (𝑘𝑡), and clear-sky index (𝑘csi), are on the 𝑥-axis.
Orange dots represent training data, and blue dots represent testing
data. Both the training and testing data display similar distributions.
For the GHI plot, when 𝐺ℎ ranges from 0 to 600 W/m2, one can
observe that the 𝑘 values mainly concentrate at regions close to 0
or close to 1, echoing the bimodal distribution seen in the previous
analysis (Fig. 3). However, from a data-driven modeling perspective,
it is challenging to predict 𝑘 solely based on 𝐺ℎ, as 𝐺ℎ alone does not
provide sufficient information about the sky condition, which plays a
significant role in determining 𝑘. The solar zenith angle plot shows a
similar distribution, indicating that the bimodal distribution of 𝑘 is less
likely to be caused by diurnal effects. Relying solely on features, such
as 𝐺ℎ or solar zenith angle, to differentiate between the two peaks in
the distribution would also prove difficult, as it does not capture the
nuances of sky-condition-related effects on 𝑘.

The clearness index and clear-sky index plots are more informative
as indicators of weather conditions. However, the mathematical rela-
tionship between these two factors and 𝑘 is not as straightforward or
simple as one might anticipate. Intuitively, lower 𝑘𝑡 and 𝑘csi values
indicate more cloudy conditions, and vice versa. As expected, 𝑘 is
higher (close to 1) under more cloudy conditions, as the sun is obscured
by clouds, and lower under clear sky conditions. Therefore, data-driven
models may learn patterns from these two useful inputs to achieve
higher accuracies. However, as observed in these subplots, there are
still numerous instances that could be considered outliers. For example,
for 𝑘𝑡 ranging from 0.4 to 0.6, 𝑘 ranges from 0.2 to 1, and for 𝑘csi values
close to 1, 𝑘 ranges from 0.2 to 0.8. These inconsistencies in the data
can adversely affect the modeling process, causing data-driven models
to make conservative predictions, as observed in the previous analysis.

4.5. Remarks and recommendation for future research

Based on the aforementioned results and discussions, one can con-
clude that the choice between data-driven models and the available
benchmark models largely depends on the availability of training data
and the specific requirements of the application. Below are some guide-
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lines for selecting an appropriate separation model:
• Availability of training data: If training data is available for
the location of interest, data-driven models, such as lightGBM,
XGBoost, kNN, or ANN, are recommended as they consistently
outperform the semi-physical benchmark models in terms of pre-
diction accuracy and consistency. Potential scenarios include but
are not limited to maintenance of PV plants during which tempo-
rary and movable sensors measuring all irradiance components
are placed on site for a period of time, or only historical 𝐷ℎ or 𝐵𝑛
are measured during the initial resource assessment period.

• Absence of training data: When training data is unavailable for
a specific location, the choice between data-driven and semi-
physical benchmarks becomes apparent. While data-driven mod-
els may still outperform benchmark models in some cases, such
better performance is usually not guaranteed. In these situa-
tions, one should consider additional factors, such as domain
knowledge, model interpretability, robustness, transfer learning,
or ensemble modeling, as mentioned earlier.

• Model complexity and computational resources: Data-driven mod-
els tend to be more computationally intensive as compared to
semi-physical benchmarks. Depending on the available compu-
tational resources and the required response time for predictions,
it would be preferred to opt for a simpler semi-physical model or
a more complex data-driven model.

• Model interpretability and decision-making: If gaining insights
into the underlying processes and relationships is crucial for
decision-making, a more interpretable semi-physical model or
kNN model might be preferred. However, if prediction accuracy
is of primary concern, a data-driven model may be more suitable.

• Flexibility and adaptability: Data-driven models can adapt to
new data when coupled with automated machine-learning frame-
work [36,37], allowing them to learn and improve over time. If
the goal is to have a model that can adjust to changing conditions,
a data-driven model may be a better choice.

The above analysis also offers valuable insights into the relation-
ships between key input features and diffuse fraction distribution, un-
derscoring the challenges in predicting 𝑘 using available input features.
To improve model performance and pave the way for future research,
several key takeaways are drawn and corresponding recommendations
are made:

• Incorporating domain knowledge: Incorporating more domain
knowledge and understanding the underlying physical mecha-
nisms that cause the varying or bimodal distributed 𝑘 under
the same levels of 𝐺ℎ or 𝑘𝑡 is essential. Additionally, guided
by domain knowledge, we could also incorporate more relevant
original or extracted features [38]. This knowledge can guide
feature engineering and model development, helping to create
more accurate and robust predictions.

• Additional weather-related variables and feature engineering: Ex-
ploring the inclusion of other weather-related variables, such as
temperature or humidity, might provide a more comprehensive
representation of the underlying data patterns. This can aid in
capturing the complex, nonlinear relationships between meteo-
rological inputs and diffuse fraction, ultimately improving model
performance. Moreover, combining input features or creating new
ones based on domain knowledge and data-driven insights may
reveal more informative representations of the data. This could
enhance the predictive power of data-driven models by allowing
them to identify and exploit previously unrecognized patterns.

• Model selection and ensemble techniques: This work builds and
investigates several data-driven models as individuals. However,
investigating alternative modeling techniques or using ensemble
methods that combine the strengths of different models could
lead to improved prediction accuracy. These approaches may
help mitigate overfitting and thus enhance the generalizability of

data-driven models to unseen locations or conditions.
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Fig. 6. Scatter plot of diffuse fraction (𝑦-axis) versus selected key input features (𝑥-axis). Selected key input features are GHI (𝐺ℎ), solar zenith angle (𝑍), clearness index (𝑘𝑡),
and clear-sky index (𝑘csi). Blue and red colors represent data from the training and testing sets, respectively.
5. Conclusion

This study has explored the performance of 10 representative data-
driven models in predicting diffuse fraction, and subsequently, diffuse
horizontal irradiance and beam normal irradiance. A total of 10 state-
of-the-art semi-physical models from the most recent literature are used
as benchmarks. Employing the most informative error metric for solar
applications, that is the normalized root mean square error, a compre-
hensive evaluation of model performance across 12 sites spanning two
continents is conducted. Whereas seven stations in one continent are
used for training and on-site evaluation, the remaining five in another
continent are set aside for off-site (i.e., unseen) evaluation.

Data-driven models, when compared to semi-physical models, have
demonstrated an error reduction of 15.2% to 22.6% on datasets from
training locations and 7.9% to 17.6% on datasets from unseen loca-
tions. However, the degree of performance enhancement of data-driven
models tends to decrease for sites without training data, particularly for
the top-performing models. Moreover, data-driven models exhibit sim-
ilar predictive behaviors, suggesting they might be learning analogous
data patterns, and consequently achieve significantly lower standard
deviations. Challenges in accurately predicting the diffuse fraction are
highlighted in scatter plots of predictions, which illustrate the associ-
ation between key input features and the diffuse fraction distribution.
To enhance the performance of data-driven models, future work could
consider incorporating additional weather-related variables or features
and integrating relevant domain knowledge into the modeling process.
In summary, this study offers valuable insights into the performance
of data-driven models for diffuse fraction prediction, the strategies for
selecting these models, and the challenges encountered during their
development. These findings pave the way for future research in this
field.
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Appendix. Selected data-driven methods

The data-driven algorithms used in this work are summarized here.

A.1. Multivariate regression

Multivariate regression (MLR) method is one of the most fundamen-
tal and straightforward statistical-learning techniques that captures the
relationship between input variables 𝒙 and output variable 𝑦 using lin-
ear predictor functions. The unknown model parameters are estimated
using the least squares method, minimizing the squared difference
between the observed and predicted values of the output variable [39].
The mathematical expression of MLR is [40]:

𝑦𝑖 = 𝝎 ⋅ 𝒙𝑖 + 𝜔0, (A.1)

where 𝝎 represents the weight vector, 𝒙𝑖 denotes the input vector, and
𝜔0 is an intercept term. Model coefficients 𝝎 and 𝜔0 are to be deter-
mined by minimizing a loss function. While widely used and easy to
interpret, MLR has some drawbacks when applied to complex problems,
such as linearity assumption, sensitivity to outliers, multicollinearity, or
limited predictive performance due to its simplicity. It is also noted that
the error term is omitted for brevity in this and subsequent equations.
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A.2. Quadratic polynomial regression

Quadratic polynomial regression (QPR) is an extension of linear
regression, where the relationship between the independent variables
and the dependent variable is assumed to be an order-2 polynomial.
This method can capture more complex relationships between the
input features and the target variable compared to linear regression
by incorporating the quadratic terms of the independent variables. For
a dataset with 𝑚 input features, the quadratic polynomial regression
model can be represented as:

𝑦𝑖 = 𝜔0 +
𝑚
∑

𝑗=1
𝜔𝑗𝑥𝑖𝑗 +

𝑚
∑

𝑗=1

𝑚
∑

𝑘=𝑗
𝜔𝑗𝑘𝑥𝑖𝑗𝑥𝑖𝑘. (A.2)

In the above equation, the first summation term represents the linear
contributions of each independent variable, while the second double
summation term accounts for the interaction between the independent
variables as well as their quadratic contributions.

A.3. Decision tree

Decision tree (DT) is a nonparametric, supervised-learning method
that recursively partitions the input feature space to create a tree-like
structure for making predictions. It is capable of capturing nonlinear
relationships between the input features and the target variable, and
it is interpretable due to its tree-like structure, which represents a set
of hierarchical decisions. A DT is constructed by iteratively splitting
the dataset into subsets based on the values of input features. At each
node, the tree selects the best feature to split the data by minimizing a
certain impurity criterion, such as the mean square error. This process
continues until a stopping criterion is met, such as a maximum tree
depth, a minimum number of samples per leaf node, or an improvement
in the impurity measure below a certain threshold. Given a dataset with
𝑚 input features, the decision tree prediction model can be represented
as a series of decisions based on the values of the input features:

𝑦𝑖 = 𝑓 (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚), (A.3)

where 𝑓 is a function representing the hierarchical decisions made by
the decision tree.

A.4. Random forest

Random forest (RF) is an ensemble-learning method that com-
bines the predictions of multiple decision trees to improve the overall
performance and stability of the model. By leveraging the power of
multiple trees, random forests can capture complex nonlinear relation-
ships between input features and the target variable while mitigating
the overfitting issues commonly associated with single decision trees.
A RF model consists of 𝐵 individual decision trees, each trained on a
bootstrap sample of the original dataset. During the training process,
each tree is built by selecting a random subset of input features at
each split, which further increases the diversity among the trees in the
ensemble. The final prediction of the random forest model is obtained
by averaging the predictions of all the individual trees:

𝑦𝑖 =
1
𝐵

𝐵
∑

𝑏=1
𝑓𝑏(𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚), (A.4)

where 𝑓𝑏 is the prediction function of the 𝑏th decision tree. RF has sev-
eral advantages over single decision trees, such as improved predictive
performance, reduced overfitting, or increased model stability. Despite
its improved performance and robustness compared to a single decision
tree, random forests still have some limitations, in that, they can be
computationally expensive and slower to train, especially with large
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datasets and a high number of trees in the ensemble.
A.5. Gradient boosting

Gradient boosting (GB) is an ensemble-learning technique that
builds a strong model by iteratively fitting weak learners, typically
decision trees, to the residuals of the previous learners. The main idea
behind gradient boosting is to minimize the loss function by adding
new learners in a sequential manner, with each new learner aiming to
correct the errors made by the previous learners. In gradient boosting,
the final model is a weighted sum of the weak learners, and the
prediction is given by:

𝑦𝑖 =
𝐵
∑

𝑏=1
𝑤𝑏ℎ𝑏(𝒙𝑖), (A.5)

here 𝐵 is the number of weak learners in the ensemble, 𝑤𝑏 is the
weight assigned to the 𝑏th learner, and ℎ𝑏(𝑥) is the prediction function
of the 𝑏th weak learner. The training process of gradient boosting
involves updating the weights of the weak learners and minimizing the
loss function using gradient descent. Denoting the model at the 𝑏th step
by 𝐹𝑏, then,

𝐹𝑏+1(𝒙𝑖) = 𝐹𝑏(𝒙𝑖) + ℎ𝑏(𝒙𝑖) = 𝑦𝑖, (A.6)

or

ℎ𝑏(𝒙𝑖) = 𝑦𝑖 − 𝐹𝑏(𝒙𝑖). (A.7)

rom the observation that residuals ℎ𝑏(𝒙𝑖) for a given model are pro-
ortional to the negative gradients of the mean squared error:

𝐿MSE = 1
𝑛

𝑛
∑

𝑖=1

[

𝑦𝑖 − 𝐹𝑏(𝒙𝑖)
]2 (A.8)

−
𝜕𝐿MSE
𝜕𝐹𝑏(𝒙𝑖)

= 2
𝑛
[

𝑦𝑖 − 𝐹𝑏(𝒙𝑖)
]

= 2
𝑛
ℎ𝑏(𝒙𝑖). (A.9)

A.6. Light gradient boosting machine

Light gradient boosting machine (LightGBM) is a gradient boosting
framework developed to be more efficient and scalable than traditional
gradient boosting methods. The main difference between LightGBM
and other gradient-boosting methods lies in the way the trees are
constructed. Instead of growing trees level-wise, LightGBM grows trees
leaf-wise, which means that it adds new leaves to the existing tree that
has the highest reduction in the loss function, rather than adding new
leaves at each level. This leaf-wise growth strategy enables LightGBM to
converge faster and obtain a more accurate model with fewer iterations.

A.7. Extreme gradient boosting

XGBoost, an acronym for extreme gradient boosting, represents a
refined iteration of gradient boosting machines (GBM). This advanced
algorithm incorporates a regularized learning objective that controls
the model’s complexity, thus mitigating the risk of overfitting. The
regularization improves the model’s generalization capabilities, making
it more robust to noise and less prone to overfitting. Furthermore, XG-
Boost’s efficient and parallelizable training process makes it a popular,
efficient, and robust choice for large-scale machine learning tasks in
data science applications.

A.8. Support vector regression

The main idea behind the support vector regression (SVR) is to
find a function that approximates the relationship between the input
features and the target variable, while allowing a predefined error
tolerance 𝜖. The objective of SVR is to minimize the following function:

𝐹 (𝒘, 𝜀) = 1
‖𝒘‖

2 + 𝐶
𝑛
∑

𝜀𝑖, (A.10)

2 𝑖=1
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where 𝐶 determines the penalty assigned to 𝜀. The optimization is
subjected to the following constraint:

|𝑦𝑖 − (𝒘𝒙𝑖 +𝑤0)| ≤ 𝜉𝑖, (A.11)

where 𝜉𝑖 depends on magnitude of 𝜀𝑖 and a margin 𝑒:

𝜉𝑖 =

{

0 if |𝜀𝑖| ≤ 𝑒
|𝜀𝑖| − 𝑒 otherwise.

(A.12)

In practice, the parameter 𝐶 determines the trade-off between max-
mizing the margin and minimizing the training error. Larger values of

will result in a smaller margin and more accurate predictions on the
raining data, but may lead to overfitting. To solve the optimization
roblem, SVR employs the kernel trick, which allows the algorithm to
perate in a higher-dimensional feature space without explicitly com-
uting the feature mapping function. Common kernel functions used
n SVR include linear, polynomial, radial basis function, and sigmoid
ernels. However, SVR is computationally expensive, especially for the
arge datasets in this work. Therefore, linear kernel function is selected
n this work.

.9. k-nearest neighbor

The k-nearest neighbor (kNN) method is a widely used instance-
ased learning algorithm that was originally developed for pattern
lassification and has been later applied to regression problems. The
dvantages of kNN include but are not limited to: (1) simple and easy to
nderstand—kNN is a straightforward algorithm that requires minimal
uning and can be easily explained; (2) nonparametric—kNN does
ot make assumptions about the underlying data distribution, making
t well-suited for handling complex, nonlinear relationships; and (3)
daptive to local data structures—kNN can adapt to local variations in
he data, providing accurate predictions in areas where data is densely
ampled. Therefore, kNN has been widely employed in the domain of
olar irradiance or forecasting research [41–43].

The kNN finds the 𝑘 nearest training samples to a given input
data point and making predictions based on the majority vote (in
classification problems) or the average value (in regression problems)
of these neighbors. Mathematically, the kNN regression prediction 𝑦𝑛+1
or a new input 𝒙𝑛+1 can be defined as:

𝑦𝑛+1 =
1
𝑘

𝑛
∑

𝑖=1
𝑦𝑖I{𝑖∈𝑁𝑘(𝑥)}, (A.13)

where I is an indicator function, 𝑁𝑘(𝑥) represents the 𝑘 nearest neigh-
bors of 𝑥 in the training data. The distance metric, usually being the
Euclidean distance, is used to find the nearest neighbors.

In this work, several strategies are employed to optimize kNN
models to ensure accurate predictions. First, kNN is sensitive to the
choice of 𝑘. This work sets 𝑘 = 10 based on the recommendation in the
literature [44]. Moreover, the performance of kNN is affected by feature
scaling. Therefore, we employ the standard normalization approach
to scale the input data, ensuring all features have similar scales and
improving the performance of the kNN model. Standard normalization,
also known as Z-score normalization, transforms each feature to have
a mean of 0 and a standard deviation of 1. This normalization step
ensures that the distance metric in the kNN model is not dominated by
features with larger numerical ranges, thus allowing for more accurate
predictions.

A.10. Deep learning and artificial neural network

Deep learning, as a subfield of machine learning, can learn complex
hierarchical representations from raw data. One of the most popular
deep learning approaches is an artificial neural network (ANN) with
three or more layers. ANN has been successfully applied to various
tasks due to its ability to model complex nonlinear mappings [5,45].
13
A commonly used ANN structure is the fully connected network or
multilayer perceptron, which is a popular data-driven tool for pattern
recognition, data classification, and regression [43,46]. The ANN model
consists of neurons organized into layers, with the layers between
the input and output layers called hidden layers. Neurons take in
the weighted sum of inputs through various layers and produce an
output using an activation function. Before training the ANN model,
input data is normalized using standard normalization techniques to
ensure all features have similar scales. This preprocessing step is crucial
for the effective training and performance of the ANN model. More
ANN optimization strategy is referred to [5]. In this work, we use the
adaptive moment estimation (ADAM) algorithm [47] as the optimizer
for training the deep learning model. ADAM is a popular choice due
to its ability to dynamically adjust learning rates for each parameter
during training. The hyperparameters are set as: the exponential decay
rates 𝛽1 = 0.9, 𝛽2 = 0.999, tolerance 𝜖 = 10−8, and the learning rate
= 0.001.
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