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A B S T R A C T

The emergence of small-scale urban distributed solar generation (DSG) has urged the exploration of site-
adaptive forecasting models designed to accurately predict future power outputs for unseen DSGs. In such
scenarios, with numerous DSGs spread across utility-scale cities and a lack of historical data, it is not
economically viable to use conventional approaches that develop individual models for each DSG. Therefore,
this work aims to tackle this real-world challenge by adapting the state-of-the-art, attention-based temporal
fusion transformer (TFT) model to 188 real-world operational DSG data, thereby validating the generalizability
of self-attention mechanism for multi-step time series forecasting. When adapted to unseen DSGs without
training data, the experiment results demonstrate that the proposed solar TFT (STFT) improves by 11.07%,
17.58%, and 22.76% over the persistence model at the 10-, 20-, and 30-minute forecasts, respectively. Even
when compared to representative deep-learning models, such as a long short-term memory model specialized
in time series forecasting, STFT has demonstrated improved forecast accuracy, achieving 3.34%, 4.18%, and
5.85% enhancements at the 10-, 20-, and 30-minute forecast horizons, respectively. However, the model
architecture of STFT is more complex, and the computational cost associated with it is relatively higher
compared to other deep learning models. This trade-off between accuracy and computational efficiency
should be considered in practical applications. The forecast performance is analyzed in three typical weather
conditions, namely, clear, partly cloudy, and overcast. STFT demonstrates advantages in high variability
periods, especially during weather transition periods, where reference models experience lagged predictions
yielding relatively large errors.
1. Introduction

With the continuous development of both urbanization and low-
carbon society trend, the increasingly limited availability of allocatable
land has given rise to a massive number of distributed solar gen-
erations (DSGs). DSGs encompass both technical and environmental
benefits, including enhanced power supply security and reduced fossil
fuel costs [1]. Therefore, the DSG installation rate has recently out-
paced that of centralized solar systems, especially in densely populated
urban areas with scarce land availability [2–4]. As the penetration of
photovoltaic (PV) power generation in the market continues to grow,
the issue of the variable and stochastic nature of the power output from
solar systems, attributed to the variability of solar irradiation, becomes
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increasingly apparent [5]. Accurate solar forecasting becomes increas-
ingly essential to maintain stability in grid voltage and frequency,
optimize the allocation of power production resources, and maximize
economic benefits and resource utilization [6–8].

However, most forecasting models have been developed for cen-
tralized solar power plants, often catering to a limited number of
specific locations. Their adaptability to new sites beyond the training
set remains challenging [9]. Furthermore, even within the domain of
distributed PV power forecasting, the focus tends to be on training
and forecasting within the confines of individual DSGs with relatively
large-scale capacities [10–12]. Consequently, the surge in the number
of DSGs or distributed PV systems poses new challenges for solar
vailable online 31 July 2024
306-2619/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.apenergy.2024.124007
Received 29 January 2024; Received in revised form 19 June 2024; Accepted 22 J
data mining, AI training, and similar technologies.
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power forecasting and integration techniques [13]. Firstly, the inherent
decentralization in DSGs means that each site has unique system con-
figurations and parameters. These variations include installed system
size, operational parameters, panel orientation, panel tilt angle, local
shading, etc. [14]. The unique configurations and parameters associ-
ated with each system and location render it difficult to construct a
highly generalizable model. Furthermore, challenges arise from ma-
chine wear and degradation of solar instruments during usage, which
can affect the consistency and effectiveness of forecasting models across
different DSGs [15]. Compounding the issue, many DSGs lack dedicated
personnel to record historical power outputs and meteorological data,
further complicating the availability of reliable historical records [16].
Additionally, newly established DSGs often lack sufficient historical
data, which introduces challenges for traditional machine or deep
learning algorithms that require substantial past data for effective
training before implementation [17]. This lack of appropriate historical
data presents a distinct challenge for accurate forecasting of solar PV
power generation, necessitating models with a high level of general-
ization. Addressing power variability and the individual characteristics
of DSGs requires the development of a more generalizable solar power
forecasting model capable of learning both shared information and the
distinctive patterns of DSGs. Therefore, the self-attention mechanism is
potential to develop a generalizable intra-hour solar PV power output
forecasting model, addressing the challenge of accurately predicting
new and unseen urban DSGs, even in the absence of historical data for
the specific DSG.

The motivation for this work can be summarized as follows (exhib-
ited in Fig. 1): To address the aforementioned challenges, this work
integrates the attention-based temporal fusion transformer (TFT) [18]
approach into the solar energy field, proposing the solar TFT (STFT)
model tailored for PV power forecasting. STFT is capable of learning
patterns separately for different types of features. Moreover, the atten-
tion mechanism within STFT facilitates the enhancement of general-
izability. This addresses the challenges of generalization and improves
the accuracy of solar PV power output forecasts in real-world scenarios.
Consequently, this approach aids in conserving human effort and time
that would otherwise be expended on manually recording solar power
and related meteorological data. However, it is worth noting that due
to its increased complexity compared to representative deep learning
models, STFT requires more time for both training and inference. This
aspect should be carefully considered.

The proposed approach involves training the model on data from
surrounding DSGs with available historical records, rather than relying
solely on available data from the same DSG. Fig. 1 visually illustrates
the necessity of addressing the issues tackled by this work and depicts
the industry scenario this work addresses. Fig. 1(a) demonstrates the
variations in PV power output for DSGs located in different areas
(depicted as DSG A, B, and C with distinct longitudes and latitudes).
These variations can be significant, even when the clear sky global hor-
izontal irradiance (GHI) is the same in different DSGs. This implies that
neighboring DSGs, despite experiencing similar weather conditions, can
exhibit substantial variations in PV power outputs. Consequently, the
development of a highly generalizable model that takes into account
diverse system characteristics becomes crucial. Fig. 1(b) demonstrates
that the proposed approach of this work leverages historical data from
different DSGs, achieving a highly generalizable model. This approach
enables accurate forecasting for unseen DSGs. The main contributions
of this work include but not limited to:

• Exploring the potential of the self-attention mechanism to meet the
demands of solar forecasting for urban distributed PV systems. This
work investigates the self-attention mechanisms within existing
models and investigates their potential applicability in solar PV
power forecasting scenarios. The experiment results demonstrate
that the proposed approach exhibits significant generalization
2

capabilities in comparison to other popular models.
• Demonstrating that the STFT approach has shown enhanced accuracy
and generalizability in intra-hour power forecasting for unseen sys-
tems. Through experiments and validation using real operational
data, it has been demonstrated that training models with data
from surrounding DSGs and directly applying them to unseen
systems yields promising results. This indicates strong practicality
and competitiveness in the market. During the training process,
this work maximizes the use of time-series data by incorporating
the time feature itself as an input. The time feature, representing
temporal variations and anticipated in the future, is combined
with relevant meteorological data to investigate temporal pat-
terns. When applying the model to unseen DSGs, including the
time information enables the model to extract specific temporal
patterns, facilitating accurate forecasting across different DSGs.

• Developing an effective method to enhance forecasting performance
under highly variable weather conditions. In the domain of solar en-
ergy, researchers typically focus on the forecasting accuracy of the
model under common weather conditions: clear, partly cloudy,
and overcast. Most machine learning models, numerical weather
prediction (NWP) models and persistence models can provide
accurate prediction under clear and overcast conditions since
these two weather types are relatively stable and predictable.
However, when it comes to the weather with high variability,
such as partly cloudy conditions, forecasting accuracy of these
traditional models tend to be lower. After learning patterns from
multiple DSGs, STFT model can accurately forecast PV power
even in these challenging conditions.

• Validating advanced methods using data from real-world urban DSGs.
This work incorporates both real-world operational data and pub-
licly available data. The utilization of real-world operational data,
obtained directly from the functioning of distributed systems,
ensures that the developed method performs effectively under
operational conditions. Additionally, the inclusion of public data
serves to further validate the models used in this work.

This work is organized as follows. Section 2 introduces preliminaries
on solar PV power forecasting. Section 3 details the STFT model.
Section 4 describes the experimental data and setup. Section 5 compre-
hensively analyzes the experimental results. The concluding remarks
are given in Section 6.

2. Related work

Solar power, as an eco-friendly energy source, has the ability to
produce a sufficient amount of electricity in an environmentally sus-
tainable manner. Motivated by worldwide policies or incentives, the
global solar capacity is growing rapidly to fight climate change, reduce
pollution, and mitigate the dependence on traditional fossil fuels. For
example, according to the International Energy Agency, the global PV
capacity is expected to supply more than 20% of global electricity
demand in 2050 [8]. However, solar generation is highly variable due
to the complex atmospheric processes. It may impose severe challenges
to the grid integration of this weather-dependent power.

Over the past several decades, solar PV power forecasting has
advanced significantly, with applications in physical models [19–21],
statistical models [22,23], and hybrid models that integrate differ-
ent techniques [8,24,25]. The rise of AI, particularly in the field of
deep learning [26], has generated notable interest within the research
community. This surge in interest has led researchers to explore increas-
ingly powerful data-driven models [27,28], as they strive to leverage
the potential of AI and deep learning for various applications [29].
These models are typically built on convolutional neural networks
(CNNs) [30], recurrent neural networks (RNNs) [31], and the special-
ized RNN called long short-term memory (LSTM) [32]. These methods
have been proven to be highly effective for tackling PV power forecast-

ing tasks across various time horizons [33], and they exhibit superior



Applied Energy 374 (2024) 124007H. Yu et al.
Fig. 1. (a) The challenge that this work aims to address. PV power outputs from different DSGs that are in proximity (depicted as DSG A, B, and C with distinct longitudes and
latitudes) can show considerable variations. (b) This work aims to address the challenge of lacking historical data from specific distributed systems, and endeavors to develop a
highly generalized forecasting model STFT, which is trained using data from multiple surrounding DSGs to predict solar PV power for newly installed DSGs.
performance in comparison with conventional physical models or tra-
ditional machine learning approaches. A more detailed review of solar
forecasting methods can be found in [8,34].

More recently, transformers and attention mechanisms proposed
by Vaswani et al. [35] have profoundly influenced the field of deep
learning. Consequently, studies exploring the application of attention
mechanisms in PV power forecasting have emerged as a popular re-
search area. Numerous studies [36–39] have validated the effectiveness
of utilizing attention mechanisms in PV power forecasting. Table 1
provides a summary of recent literature related to different methods
of PV power forecasting.

In addition to delivering promising results in general time-series
forecasting, the self-attention mechanism reduces dependence on ex-
ternal information and excels in characterizing internal correlations
among input features. This enhances the generalizability of the model
[40], helping to address the aforementioned problem. As stated by Zhao
et al. [41] and Tian et al. [42], the self-attention mechanism enhances
the capacity of the model to capture the global-level context, resulting
in improved performance and generalization.

However, the self-attention mechanism alone encounters difficulties
in handling features of different types, TFT model [18] emerges as a
3

solution. TFT model, as an attention-based model, employs different
temporal mechanisms for features with distinct characteristics and
introduces specialized mechanisms for handling various features, in-
cluding meteorological and time data. Then, López Santos et al. [43]
introduced the adoption of TFT in PV power forecasting. TFT outper-
forms the results of several other methods, including auto-regressive
integrated moving average, LSTM, MLP, and extreme gradient boosting
(XGB), showcasing its potential in handling multivariate solar fore-
casting problems. Moreover, Mazen et al. [44] combined the gated
recurrent unit with TFT to predict PV power generation, demonstrating
the superior accuracy of their model compared to commonly used time-
series algorithms and prediction models in the solar field. TFT has
been proved to be a viable solution, even in the context of forecast-
ing residential electricity consumption, particularly at the substation
level [45]. This scenario shares comparable recurrent profiles and local
influences with PV power generation in urban settings, further high-
lighting the effectiveness of TFT. However, it is important to note that
the available work did not consider the prediction of power generation
in distributed PV systems under the constraint of limited historical data.
Therefore, there is still a need for comprehensive evidence to assess
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Table 1
Summary of recent literature related to different methods for PV power forecasting.

Category Method Horizon/Resolution Input

Physical model Physical model chains [19] Day-ahead,
intra-day/15-min

NWP data and weather data

Physical environmental parameter prediction model
[21]

Day-ahead/Hourly Geographical data, meteorological data
and circuit data

Statistical model Motion estimation model [11] 30-min-ahead/30-min PV power data
Auto-regressive integrated moving average [22] Day-ahead/Daily PV power data
Caputo derivative [23] 1-, 5-, and

10-min-ahead/1-min
PV power data

Hybrid model
Hybrid gated recurrent unit (GRU) model [10] Day-ahead/5-min PV power data and weather data
Hybrid wavelet packet decomposition and LSTM
model [24]

1-h-ahead/5-min PV power data and weather data

Hybrid salp swarm algorithm, RNN and LSTM model
[25]

1-h-ahead/5-min Weather data

Deep learning CNN-based model CNN and variational mode decomposition model [33] 1 to 3-h-ahead/Hourly PV power data and weather data
Multi-column CNN model [46] 2-h-ahead/5-min PV power data, satellite image and

weather data

Deep learning RNN-based model LSTM and GRU model [32] 1 to 5-h-ahead/Hourly PV power data, seasonal data and
weather data

RNN-based multi-task learning model [31] 30-min to
7-h-ahead/30-min

PV power data

Deep learning attention-based model

Interpretable temporal-spatial graph attention model
[12]

4 to 6-h-ahead/15-min PV power data, geographical data and
clear-sky irradiance

Attention-based multi-task learning model [36] 1-h-ahead/Hourly PV power data and weather data
Convolutional and channel attention-based model [37] 30-min-ahead/30-min PV power data and weather data
Sequence to sequence and attention-based model [38] 1-h-ahead/Hourly PV power data, NWP data and weather

data
LSTM and self-attention based model [39] 24-h-ahead/Hourly PV power data, weather data and

weather forecast data

Note: Weather data comprises ambient temperature, atmospheric pressure, solar irradiation, solar radiation, elevation angle, ambient temperature, daily rainfall, wind speed, wind
direction and relative humidity.
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the effectiveness of TFT in addressing the generalization issue across
multiple systems within distributed PV systems.

3. Methodology

3.1. Problem formulation

The objective of this work is to formulate a generalizable solar PV
power forecasting model. In the training phase, let the total DSGs be
𝑋, the ratio of the training set to the whole set be 𝜌, and denote the
training set as 𝑋train and the testing set as 𝑋test:

𝑋 = {𝑋1, 𝑋2,… , 𝑋𝑚},

train = {𝑋𝑖} with ratio 𝜌,

𝑋test = 𝑋 −𝑋train,

(1)

here 𝑚 represents the number of DSGs. Each 𝑋𝑖 has its own unique
ata distribution. Therefore, a model that fits 𝑋𝑖 effectively may not be
uitable for 𝑋𝑗 , where 𝑖 ≠ 𝑗. For specific DSG 𝑋𝑙 at the time 𝑡1 to 𝑡𝑛 in
he training set:

𝑙 =

⎡

⎢

⎢

⎢

⎣

𝑥𝑙1(𝑡1) ... 𝑥𝑙1(𝑡𝑛)

... ... ...

𝑥𝑙𝑘(𝑡1) ... 𝑥𝑙𝑘(𝑡𝑛)

⎤

⎥

⎥

⎥

⎦

, (2)

here 𝑘 denotes the number of input dimensions. In the first row, 𝑥𝑙1
orresponds to the PV power, while the subsequent entries represent
eteorological data, including clear sky GHI, clear sky direct normal

rradiance (DNI), clear sky diffuse horizontal irradiance (DHI) and clear
ky beam horizontal irradiance (BHI). 𝑛 stands for the number of time
nstances. The model 𝑓 can simultaneously output PV forecasts:

𝑥̂𝑙1(𝑡𝑛+1) ... 𝑥̂𝑙1(𝑡𝑛+𝑗 )
]

= 𝑓

⎛

⎜

⎜

⎜

⎡

⎢

⎢

⎢

𝑥𝑙1(𝑡1) ... 𝑥𝑙1(𝑡𝑛)

... ... ...
𝑙 𝑙

⎤

⎥

⎥

⎥

⎞

⎟

⎟

⎟

, (3)
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⎝⎣
𝑥𝑘(𝑡1) ... 𝑥𝑘(𝑡𝑛)⎦⎠ f
here 𝑗 represents 𝑗-step-ahead forecast. The training objective is to
minimize the error between the observed value (ground truth) and the
predicted result:

𝜀𝑇 = 1
𝐿

𝐿
∑

𝑙=1

|

|

|

𝑥̂𝑙1(𝑡𝑛+1) − 𝑥𝑙1(𝑡𝑛+1),… , 𝑥̂𝑙1(𝑡𝑛+𝑗 ) − 𝑥𝑙1(𝑡𝑛+𝑗 )
|

|

|

. (4)

The specific error definition formula may be different depending on the
chosen metric. After the training, 𝑓 will be applied on the test set 𝑋test
for inference. The ultimate goal of the model is to minimize prediction
errors on the testing set:

𝜀𝑅 = |

|

|

𝑥̂𝑡𝑒𝑠𝑡1 (𝑡𝑛+1) − 𝑥𝑡𝑒𝑠𝑡1 (𝑡𝑛+1),… , 𝑥̂𝑡𝑒𝑠𝑡1 (𝑡𝑛+𝑗 ) − 𝑥𝑡𝑒𝑠𝑡1 (𝑡𝑛+𝑗 )
|

|

|

. (5)

For simplicity, the observed value will be expresses as 𝑦(𝑡𝑛+1) to
𝑦(𝑡𝑛+𝑗 ) to replace the expression 𝑥1(𝑡𝑛+1) and 𝑥1(𝑡𝑛+𝑗 ). In this work,
or each sequence instance, the generation occurs in a sliding window
anner with 𝑛 set to 6 as the sequence input, 𝑘 set to 5 as the number

f inputs, and 𝑗 set to 3, covering 30-minute-ahead multi-step PV power
orecasts from 𝑡1 to 𝑡3 with a step size of 10 min.

.2. STFT for solar forecasting scenario

This study leverages TFT [18] as its base model and introduces
TFT to generate accurate multi-horizon forecasts for solar PV power.
s a model specialized in the field of solar energy, the architecture
f STFT employed in this study is depicted in Fig. 2. Considering the
iverse nature of real-world solar time series data, STFT is designed
o handle multiple data sources in solar power forecast simultane-
usly, ranging from time-dependent to stationary, past-observed, or
nown future, and utilizes various techniques to effectively capture
emporal dynamics. Specifically, in Fig. 2, it can be observed that
he nameplate parameters of DSGs serve as static data, DSG power is
enoted as both past-observed and target data, while clear sky GHI,
lear sky DNI, clear sky DHI, and clear sky BHI are also considered
s past-observed data. Additionally, calendar date serves as known

uture data, as it can be retrieved in advance. The data undergo
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Fig. 2. Model architecture of STFT. It consists of variable selection networks, static covariate encoders, LSTM encoders, gating mechanisms, GRNs, self-attention mechanisms. STFT
elects relevant variables, captures temporal dependencies, applies self-attention, and produces final predictions.
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ariable selection networks to identify relevant features, ensuring the
ecognition of the most correlated variables on a per-instance basis.
oreover, variable selection networks effectively remove redundant

eatures during training, resulting in the optimal selection of clear
ky meteorological data. Static covariate encoders seamlessly integrate
tatic features into temporal dynamics for static data. In this study,
he nameplate parameters of DSGs are considered as categorical static
dentifiers in scenarios involving multiple DSGs. When handling unseen
SGs, STFT has the ability to capture the most similar temporal context
atterns from the existing DSGs, thereby enabling accurate forecasting.
or the remaining data, a well-defined structure with key compo-
ents, including LSTM encoder, gating mechanisms, and gated residual
etwork (GRN), is employed for flexible model component selection,
nabling the detection of the more relevant meteorological information
t specific past time frames. With the clear sky historical meteorological
ata, especially GHI and DNI, gating mechanisms selectively chooses
he relevant historical features. Simultaneously, it filters out irrelevant
lear sky historical meteorological data to predict the PV power at a
pecific time. The self-attention mechanism effectively captures long-
erm dependencies and enhances generalizability. Lastly, the inclusion
f the quantile loss function enhances the robustness of STFT against
utliers. Given the presence of extreme weather conditions, the quantile
oss function aids in reducing sensitivity to extreme weather outliers by
roviding a probabilistic forecast of a quantile of PV power. Further
etails about gating mechanisms, variable selection networks, static
ovariate encoders and the corresponding quantile loss can be found
n Appendix A.

STFT adopts and modifies the self-attention mechanism [35] to
apture long-term relationships in the context of multi-horizon fore-
asting scenarios. Given that historical information can be viewed as
sequence, STFT leverages attention mechanisms to capture depen-

encies across various time steps, effectively learning and integrating
emporal patterns. When deployed in a new and unseen DSG, which
ay exhibit distinct characteristics compared to the initially trained
SG, the attention mechanism aids the model in uncovering relevant

emporal relationships specific to the new DSG. This enables the model
o apply these insights to make accurate predictions. The attention
echanism consists of values 𝑽 ∈ R𝑁×𝑑𝑉 , keys 𝑲 ∈ R𝑁×𝑑𝑎𝑡𝑡𝑛 , and

ueries 𝑸 ∈ R𝑁×𝑑𝑎𝑡𝑡𝑛 . The scaled dot-product attention method is as
ollows:

ttention(𝑄,𝐾, 𝑉 ) = Softmax(𝑄 ⋅𝐾𝑇 ∕
√

𝑑 ) ⋅ 𝑉 . (6)
5

𝑎𝑡𝑡𝑛
To capture the multiple patterns simultaneously, multi-head attention
is proposed by Vaswani et al. [35]:

MultiHead(𝑄,𝐾, 𝑉 ) = Concat(head1,… ,headℎ) ⋅𝑊 , (7)

where head𝑖 = Attention(𝑄 ⋅ 𝑊 𝑄
𝑖 , 𝐾 ⋅ 𝑊 𝐾

𝑖 , 𝑉 ⋅ 𝑊 𝑉
𝑖 ) and weights are

head-specific. To assess the importance of each feature, STFT adjusts
the original multi-head attention mechanism and incorporates additive
aggregation of all heads to create a shared head:

STFTHead(𝑄,𝐾, 𝑉 ) = ℎ̃𝑒𝑎𝑑 ⋅𝑊 , (8)

where ℎ̃𝑒𝑎𝑑 = 1
𝐻

∑ℎ
𝑖=1 Attention(𝑄 ⋅𝑊 𝑄

𝑖 , 𝐾 ⋅𝑊 𝐾
𝑖 , 𝑉 ⋅𝑊 𝑉 ).

eneralization in unseen DSG. Time-related features can be broadly
ategorized into short-term dependency features and long-term depen-
ency features. STFT leverages LSTM for local enhancement, capturing
pecific and distinguishable information for each DSG. As for the long-
erm features, which encompass the overall generalized characteristics
f multiple DSGs, they are considered complementary. The inclusion
f the attention mechanism aids in capturing long-term temporal pat-
erns, thereby enhancing the generalizability. By incorporating this
ttention mechanism, the model can selectively focus on the most
nformative aspects of past meteorological data and power generation
ata, particularly in the context of long-term dependencies.

. Experiment, data and setup

The methodology applied in this study encompasses the following
teps. Firstly, data pre-processing including data cleaning and normal-
zation is performed to convert raw data into a format that is more
uitable for modeling. Subsequently, during the model training phase,
TFT is trained and the hyperparameters are tuned. Finally, the results
re evaluated under two scenarios. The overall flowchart is depicted in
ig. 3, while the procedures are summarized in Table 2.

.1. Experiment data

The experiment utilizes data from 188 DSGs located in the Rizhao
rea, with the central coordinates at 35.5◦N, 119.2◦E, in Shandong

province, China. Fig. 4 illustrates the position of the Rizhao area within

the global PV power potential map and the distribution of investigated
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Fig. 3. The overall flowchart of STFT development and inference. DSGs in purple represents 70% of randomly selected DSGs and are utilized for both training and inference
purposes. The remaining 30% of DSGs, marked in blue, represent unseen DSGs and are exclusively used for inference purposes. The specific details of the dataset split method can
be found in Section 5.
Table 2
STFT development and inference procedures. It includes data pre-processing, model training, and inference.

Step Procedure Details

1 Data pre-processing After splitting the multiple DSGs dataset, data preprocessing involves data cleaning on the
power data and min–max normalization of the meteorological data (see Section 4.2).

2 Model training
STFT is constructed using historical DSG power, meteorological data, and the calendar date as
inputs, with the future multi-horizon DSG power as the output. The detailed methodology can
be found in Section 3.2.
The quantile loss function is defined, and its mathematical expression can be found
in Appendix A.4.
STFT is trained using the AdamW optimizer [47]. The hyperparameters are tuned using Optuna
[48] to find suitable combinations (see Appendix C).

3 Model inference After the training phase, STFT is utilized for inference in two scenarios: DSGs with available
training data and unseen DSGs without any prior training data. The details of the evaluation
metrics can be found in Section 4.3, while the results are elaborated upon in Section 5.
DSGs in Rizhao. The PV power potential of the Rizhao area is in
the middle level on a global scale. Only with proper management
and accurate forecasting, Rizhao can reap significant benefits from PV
power generation. The dataset covers the period from January 1, 2020,
to December 31, 2020. The data consists of DSG power, clear sky GHI,
clear sky DNI, clear sky DHI, clear sky BHI and date, all with 10-
min temporal resolution. This work is focused on newly established
urban distributed PV installations. These PV installations often lack
historical data or have limited records but require accurate predictions.
Additionally, each PV installation has unique characteristics. Taking all
these factors into account, the aim of this work is to develop a highly
generalizable model for distributed PV systems within a specific region.
This enables the swift deployment of newly distributed PV installations,
even in situations where training data is scarce during the initial
deployment phase. To maintain the focus on the generalizability of
STFT and minimize interference from other factors, this work excludes
the incorporation of certain elements such as NWP and external inputs
like satellite imagery or weather data. Future research will explore
these aspects in more depth. By prioritizing the development of a robust
and generalizable model for distributed PV systems, this work lays the
groundwork for more effective deployment strategies in urban areas.
6

Meteorological data. For predicting PV power output across a multi-step
horizon, it is essential to take into account specific relevant mete-
orological features. Among these features, clear sky GHI, DNI, DHI,
and BHI from McClear model [50] are used. McClear [50] model is
a widely-used physical solar radiation model that estimates clear sky
solar radiation under various atmospheric and geographical parame-
ters. Clear sky GHI represents the total available solar energy received
on a horizontal surface in clear sky condition. Clear sky DNI refers
to the solar radiation that comes directly from the disk of the sun.
It represents the intensity of solar radiation in a beam that strikes a
surface normal to the sun, directly affecting the electrical output of
solar panels. Higher clear sky DNI generally leads to increased PV
power production, especially in conditions of ample direct sunlight.
Clear sky DHI represents the solar radiation that reaches a horizontal
surface after scattering during the clear sky weather. DHI can impact
PV power as it contributes to a portion of the radiation received by PV
panels. Clear sky BHI refers to the direct solar radiation incident on a
horizontal surface in clear sky conditions. Clear sky BHI is essential for
evaluating the energy output of PV systems when the panels are tilted
to follow the path of the sun, not when they are oriented horizontally.

DSG power. Given the objective of predicting future PV power in each
DSG, it is imperative to incorporate past PV power. The DSG power
in this work refers to the solar power generated by each DSG, serving
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Fig. 4. The Rizhao area, situated at 35.5◦N, 119.2◦E, ranks in the midrange for PV power potential globally [49]. In Rizhao, DSGs are utilized and distributed across the entire
area.
as both a key feature and the primary focus of research. As detailed
in Section 3.1, 𝑛 is set as the number of past PV power outputs to
be included in each instance, recognizing its significant impact on PV
power forecasts for subsequent time steps.

Calendar date. The time series dataset includes specific calendar date
information, encompassing the month, day, and minute as known
future, time-varying features. This inclusion aims to provide calen-
dar information for predictions in unseen DSGs, as solar energy ex-
hibits periodic patterns and date information can serve as a valuable
reference.

4.2. Data pre-processing

Data pre-processing plays an important role in PV power fore-
casting. It is defined as the transformation of raw data into a form
suitable for modeling. In this work, the following pre-processing tasks
are included: data cleaning and data normalization.

Data cleaning. Data points with a solar zenith angle exceeding 80◦

are excluded to mitigate the high airmass effect. This exclusion is
based on the understanding that such angles typically correspond to
nighttime or periods when the sun is situated significantly below the
horizon, leading to no sunlight available for solar power generation and
resulting in DSG power and other relevant meteorological data being
close to zero.

Data normalization. For the collected data, separate normalization is
performed for each DSG. The meteorological data is normalized us-
ing the min–max normalization method. The min–max normalization
method [51] has been widely employed in literature focused on solar
forecasting, thus equally weighting different types of data with different
magnitude [46]. In the training set:

̂𝑥𝑙𝑒(𝑡𝑛) =
𝑥𝑙𝑒(𝑡𝑛) − min(𝑥𝑙𝑒)

max(𝑥𝑙𝑒) − min(𝑥𝑙𝑒)
, (9)

where 𝑥𝑙𝑒(𝑡𝑛) denotes the irradiance value for a specific meteorological
feature 𝑒 at the time 𝑡𝑛 in the DSG 𝑥𝑙, min(𝑥𝑙𝑒) and max(𝑥𝑙𝑒) denote the
minimum and maximum irradiance values for certain feature 𝑒 within
the range 2 to 𝑘 in the certain DSG.

4.3. Experiment setup

Model training environment. DSG power outputs are forecasted using
STFT, and the model performance is compared to that of reference
models, including the persistence model, MLR, MLP, LSTM, GRU, XGB
and gradient boosting regression (GBR). The persistence model serves
as a fundamental approach, assuming that PV power for the next time
period remains unchanged. Moving on to MLR, it functions as a linear
predictor, capturing relationships between historical PV powers and
7

future PV powers through least squares estimation. MLP, on the other
hand, is a feedforward neural network leveraging nonlinear activation
functions and learning optimal weights to transform historical powers
into predictions for future time steps. LSTM, a specialized type of RNN,
excels in processing sequential data and is generally effective for multi-
step PV forecasting tasks. GRU is also a specialized RNN, but it has a
simpler structure and lower computational burden compared to LSTM.
Additionally, XGB stands out as an implementation of gradient boosted
trees, iteratively focusing on errors and utilizing gradient descent for
tuning. Meanwhile, GBR sequentially combines weak learners, often
decision trees, to minimize the loss function and provide accurate PV
power predictions. Further details can be found in Appendix B. STFT
model is trained using Pytorch Forecasting [52]. For specific details on
STFT hyperparameter settings, please refer to Appendix C. The other
models utilize various libraries and packages, such as scikit-learn [53]
for MLR, basic Pytorch [54] framework for LSTM, GRU and MLP, and
XGB’s [55] own package for XGB.

Evaluation metrics. Two statistical metrics for the models’ error are
used to assess their performance as recommended in Yang et al. [56]
and Chu et al. [57], namely root mean square error (RMSE) and
forecast skill. The persistence model [58] in Appendix B.1 is used as
a benchmark for all other models.

• RMSE, which measures the average square error in the forecast,
with smaller RMSE values indicating higher prediction accuracy:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦(𝑡𝑛) − 𝑦̂(𝑡𝑛))2 (kW). (10)

• Forecast skill, which measures the improvement of the investi-
gated forecast over the reference persistence model:

𝑠 = 1 − RMSE
RMSEP

, (11)

where 𝑠 denotes the forecast skill and P denotes the persistence
model.

5. Results and discussion

The models are evaluated in two scenarios: DSGs with available
training data and unseen DSGs without training data. The dataset is
divided into three sets. Initially, 70% of the DSGs are randomly selected
to form a primary subset. The training set is then constructed using the
data spanning the first three weeks of each month throughout the year
within this subset of DSGs. Subsequently, the data from the remaining
weeks of each month is employed for model assessment when training
data is available, as discussed in Section 5.1. The remaining DSGs are
kept as an independent set for assessing unseen DSGs, as detailed in
Section 5.2.
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Table 3
Forecasting performance when training data is available. STFT model is the top-performing model with the smallest RMSE values and the largest
𝑠 values.
Step Metric STFT MLR MLP LSTM GRU XGB GBR Persistence

10-min RMSE (kW) 0.064 0.101 0.066 0.065 0.065 0.073 0.069 0.071
𝑠 10.14% −43.28% 6.67% 8.46% 8.29% −2.68% 2.53% –

20-min RMSE (kW) 0.081 0.146 0.083 0.082 0.083 0.099 0.093 0.094
𝑠 14.08% −55.06% 11.54% 12.51% 11.82% −5.13% 1.31% –

30-min RMSE (kW) 0.089 0.187 0.095 0.094 0.094 0.126 0.110 0.111
𝑠 19.79% −68.19% 15.13% 15.41% 15.35% −13.28% 1.03% –
5.1. Model assessment when training data is available

Table 3 displays an evaluation of the model’s performance when
training data is available. Both the training and assessment data are
derived from the same DSGs. To make a general performance compari-
son, the RMSEs of all models are calculated for each DSG. Subsequently,
the average RMSE and the corresponding forecast skills are obtained.

Based on the results in Table 3, the improvement in the forecast
skill of all models compared to benchmark models ranges from −43.28%
to 10.14% in the 10-min forecast, from −55.06% to 14.08% in the 20-
min forecast, and from −68.19% to 19.79% in the 30-min forecast.
Additionally, it is notable that the RMSE of all models tends to increase
as the forecast time extends, which is logical because as the horizon
increases, the models face greater challenges in predicting the future
trends of PV power. Delving deeper into model performance, the top-
performing model, STFT, exhibits an improvement in forecast skill
as the prediction horizon extends, peaking at 19.79% in the 30-min
forecast. This consistent outperformance of the deep learning models,
including STFT, MLP, LSTM and GRU, over the benchmark models is
a noteworthy trend. Note that the GRU model and LSTM model may
appear to have the same RMSE values in 10- and 30-min forecast when
rounding the experimental results to three decimal places. However,
upon calculating the results using a more precise forecast skill eval-
uation, it is observed that LSTM performs slightly better than GRU.
Among the machine learning models in the reference set, only GBR
shows relatively good performance. This superior performance can be
attributed to the adaptability and capability of deep learning models to
learn complex, non-linear relationships.

The model assessment when the training data is available reveals
that all deep learning models exhibit strong performance. Notably,
STFT outperforms other models across all horizons, showcasing its
proficiency in capturing long-term temporal patterns through the self-
attention mechanism and utilizing LSTM for local enhancement [18].
Moreover, as the static covariate encoders treat the DSG name as a
categorical static identifier, STFT can achieve more precise forecasts
when abundant historical data from a specific DSG is available.

5.2. Models assessment on unseen DSGs

5.2.1. Experimental results
In this section, the ultimate goal is to evaluate the models in the

new and unseen DSGs so that the generalizability and robustness of the
models can be assessed. The evaluation of the all models’ performance
for unseen DSGs is presented in Table 4. The results indicate that
the STFT model outperforms all other models in 10-, 20-, and 30-min
forecasts. Specifically, RMSE and forecast skill exhibit similar trends
across all models. The improvement in the forecast skill of all models
compared to benchmark models ranges −38.43% to 11.07% in 10-min
forecast, from −49.79% to 17.58% in 20-min forecast, and from −63.41%
to 22.76% in 30-min forecast. The top-performing model, STFT, reveals
a 22.76% higher forecast skill than the benchmark model in the 30-
min forecast. As the forecast horizon increases, the forecasting accuracy
of STFT improves. Additionally, LSTM and GRU achieve their highest
forecast skills of 16.91% and 16.82%, respectively, in the 30-min
forecast for unseen DSGs.
8

While the forecasting accuracy of the persistence model substan-
tially declines with the increase in forecast horizon, deep learning mod-
els such as STFT, LSTM, GRU, and MLP show significant improvements
LSTM, GRU and MLP show less effectiveness with available training
data, whereas STFT, known for its high generalizability, demonstrates
superior forecasting skills. For LSTM and GRU, a similar phenomenon
to model assessment when training data is available also arises here.
Specifically, these two models demonstrate very similar performance,
indicated by identical RMSE values across 10-, 20-, and 30-min fore-
casts. Nonetheless, LSTM demonstrates marginally superior forecasting
accuracy in terms of forecast skill. In addition, the forecast capabilities
of traditional machine learning models are found to be inferior to
those of the persistence model. This may be explained by the fact that
traditional deep learning and machine learning models have difficulty
generalizing effectively when there are changes to the DSG, environ-
ment, and location. They rely on learning patterns from the seen data.
For instance, Srivastava and Lessmann [59] have proved that LSTM
is hardly generalizable. Additionally, due to limitations in complexity,
traditional machine learning models only have a limited capacity to
capture complex relationships within multiple DSGs. When applied
to unseen DSGs, the relationships they capture are often inaccurate.
However, for STFT, the gating mechanisms and variable selection net-
work extract relevant historical meteorological and power data while
suppressing unnecessary ones. The static covariate encoders handle
static known future date information separately. This allows STFT to
capture periodic information and make predictions based on the known
date for unseen DSGs. In addition, the self-attention mechanism, as
explored by Niu et al. [40], delves into long-term dependencies and
weighs the importance of different parts of the input sequence. This
exploration is aimed at enhancing the generalizability of the model
when making predictions in multiple DSGs. When data from unseen
DSGs is introduced, the global context in the self-attention mechanism
enhances the generalizability of the model. To further evaluate the
performance of STFT, the evaluation based on the public dataset has
also been explored. The results show that STFT performs better than
the benchmarks, which again confirms the higher generalizability of
STFT, more details are presented in Appendix D.

5.2.2. Comparison between top performers
This section provides a detailed comparison of the top two perform-

ing models, STFT and LSTM. Fig. 5, as the Tukey box [60], provides a
concise summary of key statistical properties for RMSE results, includ-
ing the median, quartiles, and potential outliers, for STFT, LSTM and
persistence model. Across all forecast horizons, similar to the results
shown in Table 4, STFT outperforms the other two models with the low-
est median RMSE. Additionally, STFT demonstrates more consistency,
as all predicted values fall within a certain range without any extreme
outliers. When the results are compared across all three time horizons,
it is clear that the advantages of STFT grow more prominent as the fore-
cast horizon increases. For the 10-min forecast, the prediction results
of STFT closely resemble those of LSTM, with the sole difference being
that LSTM predicts some values with considerably larger deviations,
whereas STFT has fewer of such deviations. The wider box in the
persistence model indicates that its predicted values display greater
variability compared to the observed results. Meanwhile, for the 20-
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Table 4
Forecasting performance when evaluated using data of unseen DSGs. In each category, the smallest RMSE values and the biggest 𝑠 values are
in bold to highlight best performance. STFT model outperforms all other models in 10-, 20-, and 30-min forecasts, exhibiting both the smallest
RMSE values and the largest 𝑠 values.

Step Metric STFT MLR MLP LSTM GRU XGB GBR Persistence

10-min RMSE (kW) 0.066 0.103 0.069 0.069 0.069 0.079 0.073 0.075
𝑠 11.07% −38.43% 7.59% 7.73% 7.60% −6.65% 1.73% –

20-min RMSE (kW) 0.081 0.147 0.085 0.085 0.085 0.103 0.097 0.098
𝑠 17.58% −49.79% 13.05% 13.40% 13.38% −4.55% 1.49% –

30-min RMSE (kW) 0.089 0.187 0.096 0.095 0.095 0.131 0.113 0.115
𝑠 22.76% −63.41% 16.45% 16.91% 16.82% −14.09% −14.09% –
Fig. 5. Tukey box plot for visualization for 10-(left), 20-(middle) and 30-min(right) forecasts of three selected models: STFT, LSTM, and reference persistence model. Across all
intra-hour forecast horizons, STFT outperforms the other two models with the lowest Q1, Q2, and Q3 RMSE.
and 30-min forecasts, RMSE values of STFT for Q1, Q2 (median), and
Q3 are all smaller than those from the other two models, highlighting
its significant advantage in long-term forecasting.

To enable a comprehensive examination of their forecasting ca-
pabilities, a series of illustrative figures are presented following the
recommendation of Murphy and Winkler [61]. The joint and marginal
distributions for different forecast steps are depicted in Fig. 6, illustrat-
ing the performance of STFT, LSTM, and the persistence model. On the
top and right margins of the sub-figures, the marginal distributions are
demonstrated in the form of histograms.

To scrutinize the distribution of predictions from both models more
thoroughly, the joint distributions of the observed and predicted power
are explored across intervals of 10-, 20-, and 30-min for STFT, LSTM,
and the persistence model. For joint distributions, a closer clustering of
points along the 45-degree line (the line of perfect agreement between
predictions and actual values) suggests better forecast accuracy. Over-
all, STFT consistently demonstrates superior forecasting accuracy with
denser clusters and a more controlled spread compared to LSTM and
the persistence model. Specifically, regarding the marginal distribution,
the forecasted PV power outputs of these three models exhibit a similar
skewed distribution. This suggests that all three models maintain a
certain degree of forecasting accuracy for unseen DSGs. However, when
considering the joint distribution, STFT shows a higher concentration
of points along the diagonal, indicating a stronger alignment between
forecasted values and measurements. The forecasted results of LSTM
tend to be smaller than those of STFT and the persistence model when
the PV power is high (greater than 1.0). The possible reason could be
that high PV power generation may indicate significant fluctuations in
weather conditions, and LSTM may encounter difficulties to capture
these fluctuations, this underprediction is more obvious when LSTM
is applied to unseen DSGs without historical training data. It has been
proven that LSTM struggles to accurately capture underlying patterns
due to their limited memory learned from other DSG [62]. This high-
lights the limitations of LSTM and reveals its dependency on both the
quality and quantity of training data [63].

For the 10-min forecast, STFT and LSTM exhibit a dense clustering
of data points along the diagonal, signifying commendable forecasting
accuracy. Points in the persistence model are more dispersed, indicating
lower accuracy than that of the deep learning models. This dispersion
may be due to inherent characteristics or limitations of the persistence
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model in capturing temporal patterns within dynamic systems. Moving
to the 20-min forecast, all models demonstrate a wider spread of data
points from the diagonal. STFT’s spread increases compared to the 10-
min forecast but still maintains a tighter cluster than the other two
models. There is a noticeable increase in the dispersion of points away
from the diagonal in the LSTM plot, surpassing that observed in the
STFT plot. This suggests that the accuracy of the LSTM model may di-
minish more rapidly than that of the STFT model as the forecast interval
increases. The persistence model exhibits the widest spread, indicat-
ing significant variability in its predictions. By comparing the 30-min
forecast, this challenge intensifies, with all models’ scatter points dis-
playing an even broader divergence from the diagonal, emphasizing
the increasing unpredictability with longer forecast durations. The
marginal histograms suggest that while forecasts are generally normally
distributed, there is an increasing spread and potential skewness as the
forecast horizon extends, reflecting the inherent increase in variability
and prediction challenge over longer timescales.

Some examples to show the time series PV power predictions with
error distributions and accumulations are presented as follows. Fig. 7
presents the results for 10-, 20-, and 30-min horizons on clear days.
Fig. 8 showcases the comparison for the same horizons during partly
cloudy weather conditions, while Fig. 9 illustrates results under over-
cast weather conditions. The timestamps have been adjusted to the
local time for enhanced clarity.

A clear period is defined as a time when clouds do not obscure the
sun, resulting in high PV power as DSGs absorb a significant amount
of solar energy. On a clear day, PV power variability is minimal, and
all three models provide accurate forecasts. The 10-min forecast in
Fig. 7 reveals an impressive synchronization among all models with
actual measurements, illustrating a smooth parabolic curve peaking
around midday. This harmony extends to the 20- and 30-min forecasts,
although minor deviations become evident, especially in the predictions
of LSTM that slightly deviate from the peak measurements. Among
all three models, regardless of the time horizon, STFT consistently
exhibits the smallest accumulated error, indicating that STFT possesses
the best forecast capability. As the sun sets, the PV power decreases,
a change that makes it challenging for the models to predict. Both the
persistence model and LSTM exhibit some lag and, as a result, perform
less effectively in these conditions. STFT outperforms the others and
delivers the most accurate forecasts of future PV power. This can be
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Fig. 6. Joint and marginal distribution of measured (x-axis) and predicted (y-axis) PV power for 10-, 20-, and 30-min ahead horizons. This work randomly selects 1% of the
results for visual clarity. Across all intra-hour forecast horizons, STFT consistently demonstrates superior forecasting accuracy with denser clusters and a more controlled spread
compared to LSTM and the persistence model.
attributed to STFT learning general characteristics from multiple DSGs,
where it recognized the time-varying pattern of PV power under clear-
sky conditions since PV power does not vary much under clear sky
conditions and applied it to this unseen DSG.

Partly cloudy conditions typically involve a mix of thick and thin
clouds, leading to the high variability in PV power outputs. On the
example day in Fig. 8, significant fluctuations in PV power output are
observed, particularly around 9:00 AM, 1:00 PM, and 2:30 PM. For
the 10-min forecast, all models attempt to capture the intermittent
variability. However, due to the inherent time lag characteristic in
the persistence model, it consistently struggles to provide relatively
accurate predictions. LSTM, while identifying trends, introduces rela-
tively large errors compared to actual results, indicating a substantial
disparity in specific data. In contrast, STFT demonstrates a more adap-
tive response to the fluctuating power levels when compared to the
benchmark persistence model and LSTM. The 20- and 30-min forecasts
continue this trend, with an increase in model disparity, which high-
lights the challenges in predicting such volatile conditions. STFT, in
particular, seems to offer a smoother representation, possibly indicating
a more versatile prediction approach. In comparison to clear conditions,
the performance of LSTM is not as robust when dealing with minor
10
weather variability. It is noticeable that, as the fluctuations persist,
the gap between LSTM and the benchmark model gradually narrows.
However, as the forecast horizon increases, the disparity between the
predicted results of all models and the actual results also gradually
increases, as can be observed in the accumulated error graph.

Overcast conditions are defined as a period when the sun is ob-
scured by clouds, and the total sky cloud coverage exceeds 90%.
Therefore, on such a day, solar energy is weak, resulting in overall
low PV power outputs. In this gloomier scenario depicted in Fig. 9, the
forecasting accuracy of all three models remain considerably low. It can
be observed that LSTM consistently produces results higher than the
actual values, regardless of the forecast horizon. This can be attributed
to the challenge of predicting the fluctuating PV power due to its low
values. LSTM can only forecast new results rely on historical learned
data, making it challenging to provide accurate predictions for rare or
new situations, such as less common overcast days. In contrast, the
persistence model and STFT perform better in the face of continuous
fluctuations, such as the 10-min forecast around 2:00 PM. In this case,
STFT can offer a reasonably accurate prediction. However, as the fore-
cast horizon increases, STFT also struggles to predict accurately when
the sun is completely obscured. With the self-attention mechanism,



Applied Energy 374 (2024) 124007H. Yu et al.

w
m

t
h
p

s
a
t
a
t
p
t
a

5

A
c
m
m
S
s
H
i
s
i
t
t
t
r
t

Fig. 7. Sample predictions, absolute error, and accumulated error time series of STFT, LSTM, and the persistence model on a representative clear day (2020-01-08), which has a
eather transition in the afternoon. (a), (b), and (c) columns represent forecasts for 10-, 20-, and 30-min horizon, respectively. When there is a weather transition, STFT adapts
ore quickly and exhibits smaller errors, resulting in a larger disparity in accumulated errors compared to the clear day.
ime periods more relevant to past data are better retained, which can
elp improve predictions for STFT. Overall, STFT still provides better
rediction results compared to the other two models.

Across all environmental conditions, STFT consistently shows a
trong alignment with actual measurements, demonstrating its reliable
nd highly accurate forecasting capability in various weather condi-
ions. Furthermore, its ability to generalize and provide substantial
ssistance in unseen DSGs is evident. On the other hand, LSTM appears
o struggle with the high variability and less common scenarios. The
ersistence model tends to provide a simplified and linear perspec-
ive, reflecting its inherent modeling characteristics and limitations in
daptability.

.2.3. Computational cost
All the experiments are implemented on the platform MAC OS

pple M1 Pro chip 16 GB RAM. Table 5 depicts the computational
ost of the proposed and reference models in this work. Among the
odels used, STFT stands out as the most complex model, requiring
ore time for both training and inference. As shown in Table 5,

TFT takes approximately 0.144 s per data instance, making it well-
uited for short-term forecasting with a 10-min temporal resolution.
owever, when considering the use of STFT for forecasting tasks, it

s important to consider the computational cost. STFT is the most
ophisticated model compared to other alternatives like LSTM, resulting
n significantly longer training and inference times. Specifically, the
raining time for STFT is roughly 12.93 times longer than LSTM, and
he inference time is approximately 20.57 times longer. This increased
ime requirement may pose challenges, particularly in scenarios where
eal-time or near-real-time predictions are crucial. Nevertheless, the
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raining and inferencing computational cost could be further reduced
Table 5
The computational cost of neural network models. STFT is the most complex model
among those used, but it requires only approximately 0.144 s per data instance for
inference.

Model Training time per epoch (s) Inference time per data
instance (s)

STFT 2928.00 0.144
MLP 22.56 0.004
LSTM 226.38 0.007
GRU 191.60 0.006

using high-performance computers to meet the requirement of practical
applications.

5.3. Limitations and directions for future research

Considering the high computational cost and model complexity
associated with STFT, this work acknowledges these limitations and
offers potential solutions to address them. Furthermore, to enhance
the transparency and generalizability of the model, future research
directions are outlined accordingly.

Model computational efficiency and complexity. The strength of STFT
lies in its ability to learn distinct patterns from different types of
features and uncover generalizable patterns for unseen DSGs. However,
the adoption of STFT significantly increases computational require-
ments and the model complexity compared to other representative deep
learning models. Table 5 quantifies the differences between STFT and
other models. To enhance computational efficiency and reduce model
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Fig. 8. Sample predictions, absolute error, and accumulated error time series of STFT, LSTM, and the persistence model on a typical partly cloudy day (2020-06-30). (a), (b), and
(c) columns refer to forecasts for 10-, 20-, and 30-min horizon, respectively. The ground irradiance of this day exhibits high variability. When encountering high fluctuation, STFT
exhibits the most adaptive response, with the slowest increase in accumulated errors, resulting in the best performance.
complexity, future research can consider adopting the following model
compression techniques:

• Pruning: Pruning can be implemented to decrease the storage
overhead of the model by removing the unimportant units using a
suitable pruning strategy. As STFT is a transformer-based model,
learnable pruning-related parameters can be used to adaptively
adjust the depth and width of the transformer [64]. Following the
pruning, fine-tuning can be conducted to restore the performance
of the model.

• Precision truncation: Precision truncation can be applied during
model training by converting the training precision from high-
precision numbers to low-precision numbers [65], such as from
32-bit floating-point to 16-bit floating-point in STFT. This conver-
sion improves efficiency by reducing the computational workload
and memory requirements associated with precision truncation.

• Model quantization: Model quantization reduces the memory
footprint and computational requirements of deep learning mod-
els. By quantizing the model parameters, such as weights and
activations, from higher precision (e.g., 32-bit floating-point) to
lower precision (e.g., 8-bit integers), the amount of memory
needed to store STFT can be significantly reduced [66], leading
to a substantial reduction in computational costs. The difference
between precision truncation and model quantization lies in
their respective focuses. Precision truncation primarily aims to
reduce the precision of numerical values during model train-
ing, while model quantization primarily focuses on representing
model parameters in a lower precision format.

• Distillation: By leveraging distillation technology [67], the model
can be optimized by utilizing a teacher model to transfer knowl-
edge to the student model. STFT, on the specific solar domain,
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can be adopted based on a pretrained teacher model from gen-
eral tasks. The computational cost of STFT can be reduced by
leveraging the knowledge embedded in the pretrained teacher
model.

Exploring these approaches further holds promise as a potential avenue
for future research.

Model interpretability. This study employs the self-attention mecha-
nism to unveil temporal dependencies in distributed PV systems. The
attention weights learned by the self-attention model signify the impor-
tance of each input token, contributing to enhance model interpretabil-
ity. Future research can utilize the attention weights to improve the
transparency of the model.

Incorporating more real-world data. To enhance the generalizability of
the model, future research can incorporate a broader range of real-
world data from diverse regions and climates. By utilizing data from
multiple locations with distinct climatic characteristics, forecasting
capabilities of the model to predict PV power in unseen DSG scenarios
can be further solidified. This approach will open up avenues for deeper
exploration and investigation in this field.

6. Conclusions

This work aims to develop intra-hour multi-step power forecasting
methods for urban distributed solar generations, taking into account the
distinct characteristics of different distributed systems. The proposed
STFT involves utilizing an attention-based deep learning methods to
achieve high generalizability for unseen DSGs. This work also explores
the performance of seven reference models and compares them with
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Fig. 9. Sample predictions, absolute error, and accumulated error time series of STFT, LSTM, and the persistence model were analyzed on a typical overcast day (2020-01-05)
characterized by a low average PV power output. (a), (b), and (c) columns refer to 10-, 20-, and 30-min forecast horizon, respectively. All three models exhibit low forecasting
accuracy. STFT provides the best prediction results compared to LSTM and the persistence model.
the proposed STFT model using data collected from 188 real-world DSG
systems.

The experiment results reveal that the STFT model outperforms both
traditional machine learning and deep learning models significantly
when assessed using data of unseen distributed solar PV installations,
achieving an average RMSE of 0.066 kW, 0.081 kW, and 0.089 kW
for 10-, 20-, and 30-min forecasts, respectively, and exhibits a fore-
cast skill improvement of 11.07%, 17.58%, and 22.76% against the
persistence model. Compared to LSTM, which is specialized in time
series forecasting, TFT demonstrates improvements of approximately
3.34%, 4.18%, and 5.85% at the 10-, 20-, and 30-min forecast horizons,
respectively. These results consistently highlight the superior forecast-
ing accuracy of STFT over conventional deep-learning methods, such
as LSTM, across varied intra-hour forecasting horizons. The proposed
STFT demonstrates both higher generalizability and accuracy when
dealing with complex real-world environments, particularly for high-
variability weather like partly cloudy and weather transition periods
that are challenging for other models to predict. However, it is neces-
sary to acknowledge that the architectural complexity of STFT leads to
a comparatively high computational cost. Striking a balance between
accuracy and computational efficiency becomes crucial in real-world
application. In conclusion, this work proposes an attention-based model
STFT to predict solar PV power for new distributed solar generations
when historical data is unavailable.
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Appendix A. Module within STFT

In this section, this work provides detailed introductions to specific
modules related to gating mechanisms, variable selection networks,
static covariate encoders, and the quantile loss within STFT.

A.1. Gating mechanisms in time series solar forecasting

The gating mechanisms, serving as a fundamental component of
STFT, aim to provide the model with the flexibility to apply non-linear
processing, focusing on the relevant parts. In specific time series solar
forecasting, gating mechanisms selectively chooses relevant historical
features. During clear sky conditions, historical data—especially GHI
and DNI—often has the most significant impact on PV power. Simulta-
neously, it filters out irrelevant past data to predict the PV power at a
specific time.

The detailed implementation of the key gate, the gated residual
network (GRN), is formulated:
GRN𝜔(𝑥𝑙1(𝑡𝑛), ℎ

𝑙(𝑡𝑛−1)) = LayerNorm(𝑥𝑙1(𝑡𝑛) + GLU𝜔(𝜂1)),

𝜂1 = 𝑊1,𝜔𝜂2 + 𝑏1,𝜔,

𝜂2 = ELU(𝑊2,𝜔𝑥
𝑙
1(𝑡𝑛) +𝑊3,𝜔 ⋅ ℎ𝑙(𝑡𝑛−1) + 𝑏2,𝜔),

(A.1)

where ELU refers to the Exponential Linear Unit activation func-
tion [68], ℎ𝑙(𝑡𝑛−1) represents the historical meteorological representa-
tion, specifically the PV power and clear sky irradiances in the DSG,
at time 𝑡𝑛−1. If no historical PV power data or clear sky irradiances are
available for the same DSG, they are considered as 0. LayerNorm is the
layer normalization technique [69], 𝜂1 ∈ R𝑑f and 𝜂2 ∈ R𝑑f correspond
to intermediate layers, while 𝑊 and 𝑏 represent the weights and biases.
For the gated linear unit (GLU) [70]:

GLU𝜔(𝛾) = 𝜎(𝑊4,𝜔𝛾 + 𝑏4,𝜔)⊙ (𝑊5,𝜔𝛾 + 𝑏5,𝜔), (A.2)

where 𝜎 represents the Sigmoid activation function, ⊙ denotes the
element-wise Hadamard product, and 𝑊 and 𝑏 still refer to the weights
and bias.

A.2. Variable selection networks in multivariate solar forecasting

Variable selection networks are an instance-wise selection mecha-
nism in STFT. All static and time-dependent inputs use separate vari-
able selection networks. It is applied on a per-instance basis, taking into
account all past, present, and known future or unknown inputs. This
approach allows the model to evaluate whether periodicity influences
its predictions through known future variables, while also offering
insights for removing the impact of redundant features. For instance,
GHI, DNI, and DHI are highly correlated; hence, utilizing all three
features simultaneously may lead to redundancy. The variable selection
network aids in reducing redundancy per instance.

Variable selection networks consist of two main components: vari-
able selection weights and processed variables. The variable selection
weights are assigned:

𝑣𝜒 (𝑡𝑛) = Softmax
(

GRN𝑣𝜒
(

𝑃 (𝑡𝑛), 𝑐𝑠
))

, (A.3)

where 𝑃 (𝑡𝑛) represents the representations of all past meteorologi-
cal information including DSG power at time 𝑡𝑛, and 𝑐𝑠 is to serve
as a temporal meteorological information selection using the static
covariate encoder (see Appendix A.3). The Softmax function serves
as the normalization. Overall, variable selection weights are used to
select relevant values based on the time dimension. For each processed
feature:

̂𝑃𝑗 (𝑡𝑛) = GRN𝑃𝑗 (𝑃𝑗 (𝑡𝑛)), (A.4)

where 𝑃𝑗 (𝑡𝑛) represents the 𝑗th meteorological information at time
𝑡𝑛, which undergoes a transformation to meet the input requirement.
Finally, the formula of variable selection networks obtained through
the multiplication of two key elements is illustrated below:

̂𝑃 (𝑡 ) =
∑

𝑣 (𝑡 ) ⋅ ̂𝑃 (𝑡 ). (A.5)
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𝑛 𝜒 𝑛 𝑗 𝑛 w
A.3. Static covariate encoders in generalizing solar forecasting

STFT includes a specialized encoder designed specifically for static
data. This is crucial because the encoder handles both time-dependent
and time-independent features, and the static feature, being time-
invariant, should be processed separately. In this work, a comprehen-
sive model is trained by combining data from multiple DSGs. To predict
PV power output within the same DSG, the system name serves as
the categorical static variable. This static variable functions as a key
feature for predictions within the same DSG, acting as an identifier that
distinguishes data across various DSGs. Consequently, when predicting
for an unseen DSG, the model endeavors to identify highly relevant
temporal context patterns. Similar to time-dependent features, continu-
ous and categorical data are also processed differently. Continuous data
is transformed using linear transformations, whereas categorical data
is transformed using entity embeddings [71]. As shown in Eq. (A.1),
separate GRN encoders are utilized to produce a static context vector.

A.4. Loss function

Unlike traditional regression models, which usually employ loss
functions focused on predicting the deterministic value of a variable
given a feature vector, STFT utilizes quantile loss [72] as its loss
function to provide a probabilistic forecast for a quantile of DSG
power. During the training, the objective is to minimizing the summing
quantile loss:

𝐿(𝑋train,𝑊 ) =
∑

𝑦(𝑡𝑛)∈𝑋train

∑

𝑞∈𝑄

𝑗max
∑

𝑗=1

𝐿𝑞(𝑦(𝑡𝑛+𝑗 ), 𝑦̂(𝑞, 𝑡𝑛+𝑗 , 𝑗))
𝑀 ⋅ 𝑗max

,

𝐿𝑞(𝑦, 𝑦̂) =

{

(𝑞 − 1)|𝑦 − 𝑦̂| if 𝑦 ≤ 𝑦̂
𝑞|𝑦 − 𝑦̂| if 𝑦 > 𝑦̂,

(A.6)

here 𝑊 represents the weights of the STFT, 𝑗 stands for the j-step
head prediction of future DSG power, 𝑀 denotes the number of
amples in the training DSG 𝑋train. Specifically, 𝑦̂(𝑞, 𝑡𝑛+𝑗 , 𝑗) means the
redicted DSG power at a specific quantile 𝑞, at a particular intra-
our horizon 𝑡𝑛+𝑗 . Given the potential for outliers due to extreme
eather conditions or anomalies, the quantile loss function enhances

he robustness of predictions by reducing sensitivity to such outliers in
he PV power forecasting.

ppendix B. Selected data-driven algorithms for solar forecasting

Except for STFT in Section 3.2, this work employs seven reference
odels: the persistence model, multivariate regression (MLR), multi-

ayer perceptron (MLP), long short-term memory (LSTM) networks,
ated recurrent units (GRU), extreme gradient boosting (XGB), and
radient boosting regression (GBR). These models are utilized to assess
nd compare the performance of multi-step PV power forecasting.

.1. Persistence model

The persistence model stands as the most elementary forecast
odel, yet its simplicity does not undermine its accuracy, especially
hen it comes to forecasting PV power. In this work, the persistence
odel is regarded as the benchmark comparing to other models. The
ersistence model assumes that the PV power remains constant between
𝑛 and 𝑡𝑛+𝑗 , resulting in the forecasting:

𝑦̂(𝑡𝑛+𝑗 ) = 𝑦(𝑡𝑛), (B.1)
here 𝑗 can be any forecast step.
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B.2. Multivariate regression

Multivariate regression (MLR) captures the relationship between the
input 𝒙 and the output 𝒚̂ using linear predictor functions, and estimates
unknown parameters through the least squares method [73]. It can be
regarded as a single-layer MLP. The mathematical formula is:

[

𝑦𝑙(𝑡𝑛+1) ⋯ 𝑦𝑙(𝑡𝑛+𝑗 )
]

=

⎡

⎢

⎢

⎢

⎣

𝑥𝑙1(𝑡1) ... 𝑥𝑙1(𝑡𝑛)

... ... ...

𝑥𝑙𝑘(𝑡1) ... 𝑥𝑙𝑘(𝑡𝑛)

⎤

⎥

⎥

⎥

⎦

⋅𝑊 + 𝐵, (B.2)

where 𝑊 denotes the weight and 𝐵 denotes the bias.

B.3. Multilayer perceptron

Multilayer perceptron (MLP) is a class of feed-forward artificial
neural networks that employ nonlinear and differentiable activation
functions and consist of multiple layers, including at least one hidden
layer that contains multiple neurons [74]. Neurons within each layer
are interconnected by weights, forming a highly connected network
structure. During the training, the input 𝑥(𝑡𝑛) is propagated through
the MLP network, and the network learns the optimal weights by
minimizing the error between the predicted output and the observed
value. With a simple 2-layer neural network, the feed-forward oper-
ation transforms historical input data into predictions for future time
steps:

𝑦(1) = 𝜎(𝑊 (1) ⋅

⎡

⎢

⎢

⎢

⎣

𝑥𝑙1(𝑡1) ⋯ 𝑥𝑙1(𝑡𝑛)

⋮ ⋱ ⋮

𝑥𝑙𝑘(𝑡1) ⋯ 𝑥𝑙𝑘(𝑡𝑛)

⎤

⎥

⎥

⎥

⎦

+ 𝑏(1)),

𝑦(𝑠) = 𝜎(𝑊 (𝑠) ⋅ 𝑦(𝑠−1) + 𝑏(𝑠)),

(B.3)

where 𝑊 and 𝑏 are the weights and biases for the certain layer, 𝑠 refers
to the number of layers in the model and 𝜎 denotes the non-linear
activation function. This learning process is achieved using the back
propagation algorithm [75], which applies gradient descent to evaluate
the influence of errors in the hidden layers on the output layer and
subsequently propagates the error corrections back to earlier layers.

In this work, all past and present features will be initially treated
equally with the same weight in the MLP without considering any tem-
poral dynamics, allowing the training process to adjust these weights
to assign greater importance to features that are more relevant for
predicting future PV power.

B.4. Long short-term memory

Long short-term memory (LSTM) networks are a special class of
RNN, capable of learning long-term dependencies [76]. The LSTM
introduces a unique memory cell structure with gating mechanisms,
including the input gate, forget gate, and output gate. These gates are
responsible for controlling the flow of information within the memory
cell, allowing the LSTM network to selectively learn, store, and retrieve
information over extended time periods.

The LSTM cell computation procedures with the input 𝑥(𝑡𝑛) at the
certain time 𝑡𝑛 are as follows [77]:

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥(𝑡𝑛) + 𝑏𝑖𝑖 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖),

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥(𝑡𝑛) + 𝑏𝑖𝑓 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓 ),

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥(𝑡𝑛) + 𝑏𝑖𝑔 +𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔),

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥(𝑡𝑛) + 𝑏𝑖𝑜 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜),

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡,

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡),

where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 denote the input gate, forget gate, and output gate, 𝑔𝑡
represents the candidate values that could be added to the cell state, 𝑐𝑡
refers to the cell state, and 𝜎 denotes the sigmoid activation function.
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LSTM excels in processing sequential data and has the capacity to
remember past information. In multi-step forecasting, LSTM treats both
the input and output as sequences, with the objective of discovering
temporal patterns between these sequence pairs.

B.5. Gated recurrent units

Gated recurrent units (GRU) [78] is also a specialized RNN that ex-
cels at capturing temporal features from hidden time series. It achieves
this with a simpler structure and lower computational burden when
compared to the LSTM. Considering the large volume of historical
power data from multiple PV systems that needs to be inputted into
the training model, the high-efficiency GRU model is utilized.

The computation procedures of the GRU cell are denoted as follows:

𝑟𝑡 = 𝜎(𝑊𝑖𝑟𝑥(𝑡𝑛) + 𝑏𝑖𝑟 +𝑊ℎ𝑟ℎ𝑡−1 + 𝑏ℎ𝑟),

𝑧𝑡 = 𝜎(𝑊𝑖𝑧𝑥(𝑡𝑛) + 𝑏𝑖𝑧 +𝑊ℎ𝑧ℎ𝑡−1 + 𝑏ℎ𝑧),

𝑛𝑡 = tanh(𝑊𝑖𝑛𝑥(𝑡𝑛) + 𝑏𝑖𝑛 + 𝑟𝑡 ⊙𝑊ℎ𝑛ℎ𝑡−1 + 𝑏ℎ𝑛),

ℎ𝑡 = (1 − 𝑧𝑡)⊙ 𝑛𝑡 + 𝑧𝑡 ⊙ ℎ𝑡−1,

here ℎ𝑡 denote the hidden state at time 𝑡𝑛, 𝑟𝑡, 𝑧𝑡, 𝑛𝑡 are the reset,
pdate, and new gates, respectively.

.6. Extreme gradient boosting

Extreme gradient boosting (XGB) is an efficient implementation
f gradient boosted trees, a popular machine learning technique that
ombines weak learners iteratively to create a stronger learner by
ocusing on the errors made at each step [79]:

𝑙(𝑡𝑛+1) =
𝑁
∑

𝑖=1
𝑇𝑖(𝑥𝑙1(𝑡𝑛+1),… , 𝑥𝑙𝑘(𝑡𝑛+1)), (B.4)

here 𝑁 denotes the total number of decision trees in the XGB ensem-
le and 𝑇𝑖(𝑥𝑙1(𝑡𝑛+1),… , 𝑥𝑙𝑘(𝑡𝑛+1)) represents the output of the 𝑖th decision
ree.

The boosting iterations are based on the functional gradient descent
pproach. Notably, the loss function is approximated using the second-
rder Taylor expansion to handle the optimization problem. The loss
unction for the target values 𝑦(𝑡𝑛) and the predicted values 𝑦̂(𝑡𝑛):

(𝑦(𝑡𝑛), 𝑦̂(𝑡𝑛)) ≈
𝑛
∑

𝑖=1

[

𝑙(𝑦𝑖(𝑡𝑛), 𝑦̂𝑖(𝑡𝑛)) + 𝑔𝑖(𝑡𝑛)(𝑦̂𝑖(𝑡𝑛) − 𝑦𝑖(𝑡𝑛))

+1
2
ℎ𝑖(𝑡𝑛)(𝑦̂𝑖(𝑡𝑛) − 𝑦𝑖(𝑡𝑛))2

]

+𝛺(𝑓 ), (B.5)

here 𝑙(𝑦𝑖(𝑡𝑛), 𝑦̂𝑖(𝑡𝑛)) denotes the loss function, 𝑔𝑖(𝑡𝑛)(𝑦̂𝑖(𝑡𝑛) − 𝑦𝑖(𝑡𝑛)) rep-
esents the gradient of the loss function, ℎ𝑖(𝑡𝑛)(𝑦̂𝑖(𝑡𝑛) − 𝑦𝑖(𝑡𝑛)) represents
he second derivative (Hessian) of the loss function and 𝛺(𝑓 ) denotes
he regularization term in the model 𝑓 .

.7. Gradient boosting regression

Gradient boosting regression (GBR) is an ensemble learning tech-
ique that builds a strong predictive model by combining multiple
eak learners, typically decision trees, in a sequential manner [80].
he method aims to minimize the loss function by iteratively adding
rees that address the residuals or errors of the previous trees. GBR can
apture patterns in the data and provide robust and accurate regression
redictions [81]. Different from other boosting regression algorithm,
BR uses the gradient descent approach for model tuning during the
oosting iterations.

GBR is an iterative ensemble learning technique that begins by
itting a simple model, such as linear regression, to make an initial
rediction using input 𝑥𝑙(𝑡𝑛), and then calculates the residual errors be-
ween the initial output 𝑦̂𝑙(𝑡𝑛+𝑗 ) and the observed 𝑦𝑙(𝑡𝑛+𝑗 ). Subsequently,
nother model is created to predict the residual errors of the previous

odel, with the goal of minimizing these residual errors. The predicted
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Table C.1
Selected hyperparameters for STFT model. Hyperparameters are tuned using Optuna.

Hyperparameters Value

Attention head size 2
LSTM layers 1
Hidden continuous size 19
Hidden size 64
Learning rate 0.003
Optimizer AdamW [47]
Dropout 0.246
Batch size 64

residual errors from this subsequent model are added to the previous
model, resulting in an improved prediction and updated residual errors.
This process is repeated, fitting a new subsequent model and updating
the residual errors accordingly. Ultimately, the predicted values from
all the models are combined to produce the final prediction, which
offers a more accurate and robust estimation of the target variable.

Appendix C. Hyperparameter setting

The power outputs of distributed PV systems are predicted using
different models. Considering time constraints, except for the STFT
model, which was trained for 10 epochs, all other neural network mod-
els are trained for 30 epochs. The hyperparameters of STFT are tuned
with the automatic hyperparameter tuning algorithm Optuna [48]. The
fundamental idea is to first set the ranges for each hyperparameter
and then utilize Optuna to select suitable combinations that maximize
the defined objectives within a specified number of trial iterations.
Table C.1 specifies the STFT hyperparameters in detail. For the other
reference models, the selection of hyperparameters is based on empir-
ical experience. The MLP model consists of three layers, including a
hidden layer with 128 dimensions. In the case of LSTM, a sequence-
to-sequence paradigm is employed, where the input of the encoder is
determined by the number of features, and the output of the encoder
is 128, matching the input of the encoder. A final linear layer is
added to ensure the output dimension aligns with the desired configu-
ration. Regarding the GRU, for the alignment, a hidden layer with 128
dimensions and 1 layer dimension is chosen.

Appendix D. Additional experiment on UNISOLAR open dataset

In order to evaluate the generalizability of the proposed model,
additional experiments are conducted on public datasets using the same
set of sequence inputs and step size. The additional experiment lever-
ages the UNISOLAR dataset [82] encompassing DSGs across campus A
and spanning data recorded from 2020 to 2022 at 15-min intervals.
Since not all solar sites have records for all the years from 2020
to 2022, the selection of the training set is based on the number
of solar sites, prioritizing those with more extensive data to ensure
that the model captures a broader range of seasonal patterns. Given
that the UNISOLAR dataset comprises distributed PV systems situated
on the same campus, all sharing the same longitude, latitude, and
irradiance data but varying in panel size, only the normalized PV
data is considered. Data pre-processing follows the same paradigm as
in previous experiments. Specifically, for unseen DSG assessment, to
overcome year-specific findings, PV power output forecasts from 2020
to 2022 are obtained.

As demonstrated in the main text (see Section 5.2.2), LSTM and
GRU are top-performing deep learning models aside from STFT. In
these additional experiments, STFT, LSTM, GRU and the persistence
model are chosen for the evaluation. It is shown in Table D.1 that
STFT performs better in forecasting unseen DSGs, surpassing LSTM,
GRU and the persistence model. The forecast skill of STFT increases
from 31.19% to 43.39% as the forecast horizons expand. LSTM and
GRU both demonstrate high forecasting accuracy on unseen DSGs.
16
Table D.1
Forecasting performance when evaluated using data of unseen DSGs. Solar sites with
site keys 15, 16, 17, 18, 19, 20, 22, 24, 25, 27, 31, 33, 34, 35, 36, 37, 38, and 40
are selected for training and solar sites with site keys 14, 21, 23, 26, 30, 32, and 39
are reserved for unseen DSG assessment. STFT model outperforms LSTM, GRU and the
persistence model in 15-, 30-, and 45-min forecasts, exhibiting both the smallest RMSE
values and the largest 𝑠 values.

Step Metric STFT LSTM GRU Persistence

15-min RMSE (W) 4.89 7.43 7.29 7.33
𝑠 31.19% −1.59% 0.56% –

30-min RMSE (W) 5.69 9.10 9.11 9.63
𝑠 38.92% 5.47% 5.29% –

45-min RMSE (W) 6.08 10.26 10.26 11.12
𝑠 43.39% 7.56% 7.45% –

These models demonstrate accuracy levels that are surpassed only by
the STFT method. For the 30- and 45-min forecasts, the accuracy of
LSTM slightly exceeds that of GRU, consistent with the results obtained
from the main text. The high accuracy of STFT in forecasting unseen
DSGs in the UNISOLAR dataset can be attributed to the location of
DSGs, as they are situated within the same campus. As a result, even
without any training data, the attention mechanism within STFT can
effectively capture these common patterns, thereby facilitating accurate
predictions. The precise predictions in the UNISOLAR dataset further
validate the generalizability of STFT.
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