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a b s t r a c t

Ground based sky imaging and irradiance sensors are used to quantitatively evaluate the impact of cloud
transmittance and cloud velocity on the accuracy of short-term direct normal irradiance (DNI) forecasts.
Eight representative partly-cloudy days are used as an evaluation dataset. Results show that incorpo-
rating real-time sky and cloud transmittances as inputs reduces the root mean square error (RMSE) of
forecasts of both the Deterministic model (Det) (16.3%~ 17.8% reduction) and the multi-layer perceptron
network model (MLP) (0.8% ~ 6.2% reduction). Four computer vision methods: the particle image
velocimetry method, the optical flow method, the x-correlation method and the scale-invariant feature
transform method have accuracies of 83.9%, 83.5%, 79.2% and 60.9% in deriving cloud velocity, with
respect to manual detection. Analysis also shows that the cloud velocity has significant impact on the
accuracy of DNI forecasts: underestimating the cloud velocity magnitude by 50% results in 30.2% (Det)
and 24.2% (MLP) increase of forecast RMSE; a 50% overestimate results in 7.0% (Det) and 8.4% (MLP)
increase of RMSE; a ±30+ deviation of cloud velocity direction increases the forecast RMSE by 6.2% (Det)
and 6.6% (MLP).

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The uncertainty in ground level solar irradiance caused by
aerosols and clouds adversely affects the stability of solar power
generation and therefore significantly increases the cost to balance
generation and demand in real time [1e3]. High-fidelity short-term
solar forecast technologies are beneficial to power plant operations,
grid balancing, real-time unit dispatching, automatic generation
control and power trading [1,4]. Therefore, they provide low-cost
strategies to mitigate the intermittency of solar power and to
decrease the solar energy integration cost.

Different short-term solar forecast methods have been devel-
oped tomeet the increasing demands for solar integration [1,5e14].
Since the short-termvariability of the solar irradiance at the ground
level is mostly caused by cloud cover [15], either remote-sensing or
local-sensing techniques are used to provide cloud information as
inputs to forecasting models. Remote-sensing based models [16,17]
use satellite images with limited temporal resolutions are not
appropriate for short-term forecasts [12,18,19]. Therefore, local-
ra).
sensing based models that provide high resolution sky images are
used for short-term forecasts with improved forecasting results
compared to models with no exogenous inputs [12e14,20,21]. The
derived cloud information consists of cloud cover, cloud trans-
mittance and cloud velocity, which are usually computed by
detecting clouds from sky images, analyzing lagged irradiance
measurements and comparing consecutive sky images, respec-
tively. However, the impact of the accuracy of cloud transmittance
and velocity derivations from local sensing techniques on the ac-
curacy of short-term solar irradiance forecasts has not been quan-
titatively studied.

In this work, we quantitatively evaluate the impact of cloud
transmittance and cloud velocity on the accuracy of short-term
direct normal irradiance (DNI) forecasts. We firstly assess DNI
forecasts usingmanually detected cloud velocity with invariant and
real-time sky and cloud transmittances inputs. This is done by
visually comparing two consecutive sky images and measuring the
displacement of clouds from the first image to the second image
using e-ruler. With this information we manually compute cloud
speed and moving direction. Forecast results are quantified in
terms of mean bias error (MBE), mean absolute error (MAE), and
root mean square error (RMSE). Then we evaluate the accuracies of
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four cloud velocity derivation methods by comparing their derived
cloud velocities with manual detections. The four methods are
Scale-invariant feature transform (SIFT), Optical flow (OF), X-cor-
relation (X-corr), and Particle image velocimetry (PIV). The DNI
forecast results based on the four methods are also calculated and
analyzed. Finally, we quantitatively analyze the effect of cloud ve-
locity uncertainty on the accuracy of DNI forecasts.

2. Preparation of data set

Broadband DNI was collected using a Rotating Shadowband
Radiometer (RSR-2, manufactured by Irradiance, Inc). In Folsom,
California (latitude ¼ 38.64+, longitude ¼�121.14+), sky images are
captured by a fish-eye camera (FE8174V, manufactured by Vivotek)
installed next to the RSR-2. The fish-eye camera has a 180+ field-of-
view len and a 3.1 MP CMOS sensor that captures and transfers sky
images (via FTP) to a remote server once per minute and stores
them in a MySQL database. The fish-eye camera is maintained
locally and we manually discard sky images compromised by
extensive soiling. Abnormal peaks and negative values in the DNI
measurements and measurements when solar elevation angle is
below 20+ are discarded as well. DNI measurements are also
examined randomly by comparing with corresponding sky images
to ensure the precision of measurements and the synchronization
between DNI data and the sky images.

Simultaneous irradiance data and sky images are downloaded
from the MySQL database and paired as data points. During clear
and overcast periods, the DNI is not affected by cloud cover.
Therefore, we selectively study partly-cloudy periods from eight
days of 2013 that include all types of clouds: March 16th (10:15 ~
15:30), March 30th (8:40 ~ 11:20 and 14:10 ~ 15:45), April 1st (8:35
~ 15:50), April 5th (9:40 ~ 15:50), April 6th (13:20 ~ 15:55), July
10th (13:00 ~ 16:00), July 22nd (8:00 ~ 16:00), July 23rd (8:00 ~
9:20 and 11:05 ~ 14:25), yielding 2483 data points in total. The data
set is randomly divided into a training set and a testing set for the
stochastic multilayer preceptron network (MLP) model. The
training set is two times bigger than the testing set, yielding 1862
data points in the training set and 621 data points in the testing set.
Another scenario of data division is applied and compared to pre-
vent the MLP model from over-training. The comparison results are
presented in the Appendix. Cloud velocity is detected manually for
each data point by comparing two adjacent sky images. The di-
rection of cloud velocity is measured in unit of degree (+) starting
from the east direction and increasing counterclockwise. Manually
detected directions and magnitudes of cloud velocity have an un-
certainty of ±20+ and ±10 pixel/min, respectively.

3. Demonstration of methods

Themethods demonstrated in this section are: (1) the cloud and
sky transmittance derivation methods, (2) the cloud velocity deri-
vation methods, (3) the cloud identification method that assists the
cloud coverage determination for the DNI forecasting models, (4)
the deterministic (Det) and the MLP DNI forecasting models which
consider cloud transmittance and cloud velocity, and (5) the sta-
tistic metrics to assess the DNI forecasts.

3.1. Cloud and sky transmittances derivation methods

The cloud transmittance (CT) and sky transmittance (ST) are
normally set to 0 and 1 in DNI forecasting models [12]. During clear
periods, the presence of aerosols decreases the DNI and causes the
clear period DNI to vary from day to day. Therefore, ST is often
smaller than 1 due to aerosols. Compared to thick clouds, such as
cumulonimbus, which absorb and reflect nearly all solar irradiance,
thin clouds, such as cirrus, only absorb and reflect a portion of it.
Therefore, thin clouds have a CTgreater than 0. To account for these
phenomena, real-time CT and ST corrections are incorporated in
this work. These are calculated as the mode of clear-sky indexes
over the past 90 min [21,22], where the mode is defined as the
number that is repeated more often than any other in a series and
the clear-sky index is the irradiance value divided by the corre-
sponding clear-sky irradiance,

CTðtÞ ¼ mode
�

B
Bclc

ðt � 90 : tÞ< qe

�
(1)

STðtÞ ¼ mode
�

B
Bclc

ðt � 90 : tÞ> qe

�
(2)

where B is the actual DNI and Bclr is the clear-sky DNI calculated
from the clear-sky model. An empirical clear-sky model is used to
compute the clear-sky irradiance Bclc [14,19]. This model computes
clear-sky DNI using an eighth-order polynomial expression that
depends on the cosine of the solar elevation angle,

Bclc ¼
X8
n¼0

ancosnq (3)

The parameters of this polynomial expression are obtained us-
ing least square method for 30 selected clear-sky days. They are
given as an¼{�0.01045,5.898,�23.93,58.79,�57.49,�50.98,172.8,
�146.9,42.72} [14,19]. This clear-sky model is simple and easy to
implement and expected to have a higher accuracy than other DNI
clear-sky models [19]. The threshold qe is suggested to be 0.7
empirically [21], which assumes clouds have transmittances
smaller than 0.7 while sky has a transmittance greater than 0.7
[23]. If no data over the past 90 min is available, CT is set to the
default value 0 and ST is set to 1.
3.2. Cloud velocity derivation methods

Four cloud velocity derivation methods are analyzed: Scale
invariant feature transform (SIFT), Optical flow (OF), X-correlation
(X-corr), and Particle image velocimetry (PIV). A randommethod is
used as a reference method.

The SIFT method is a computer vision method that extracts key
points from a reference image [24,25]. These key points have spe-
cific features and are invariant to scaling, rotation or image trans-
lation. Key points with same features are recognized in a new
image. Cloud velocities are derived by dividing the displacements
between matched key points and the time interval between the
two consecutive images. A representative cloud velocity is obtained
using a k-means method [26].

The OF method has been widely used for computer vision ap-
plications [27] and has been recently introduced in the research of
solar forecasts for cloud velocity derivation [28]. This method as-
sumes that the brightness (I) of an image pixel remains constant
when it is displaced from location (x,y) at time t to another location
(x þ Dx,y þ Dy) at time t þ Dt, which results inI(x,y,t)¼I(x
þ uDt,y þ vDt,t þ Dt). To solve this equation for the u and v vari-
ables, additional constraints derived from several methods such as
the correlation method, the gradient method or the regression
method are needed. More details about the implementation of this
method can be found in Refs. [28e30].

The X-corr method directly compares two consecutive images
and computes the displacement that minimizes the matching
errors using the Minimum quadratic difference method [31,32].
The representative cloud velocity is obtained by dividing the
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displacement by the time internal between two consecutive
images.

The PIVmethod analyzes two consecutive images and partitions
each image into interrogation windows [12,19,33]. Cloud dis-
placements are determined by analyzing the correlation between
two consecutive interrogation windows using the Minimum
quadratic difference method [34]. The velocities in all interrogation
windows are obtained by dividing the cloud displacements by the
time interval between the consecutive images and clustered using a
k-means method to obtain a representative cloud velocity.

The random method is used as a reference to benchmark the
cloud direction estimations by the above four methods. This
method randomly generates a direction for the cloud velocity for
each time point (no velocity magnitudes are generated).

3.3. Cloud identification methods

Cloud identification methods for sky images captured by the
fish-eye cameras were developed by Chu et al. [15]. A smart
adaptive cloud identification system (SACI) that integrates Fixed
threshold method (FTM) [35], Minimum cross entropy method
(MCE) [36e38] and Clear-sky library method (CSL) [18] was
implemented and validated for a period of one month [15].

The SACI method categorizes each sky image as clear or cloudy
using five criteria computed from past 10-min Global Horizontal
Irradiance (GHI) time-series. The five criteria are mean GHI, max
GHI, length of GHI time-series, variance of GHI, and maximum
deviation from clear-sky gradient [39e41]. If an image is catego-
rized as cloudy, the hybrid threshold method [35] is used to analyze
the histograms for the red-channel to blue-channel ratio and
further categorize the image as either overcast or partly-cloudy.
After the image classification, the SACI employs FTM for overcast
images, CSL with FTM for clear images, and CSL with MCE for
partly-cloudy images. The SACI method is validated for various
weather conditions and achieves over 90% accuracy [15]. Fig. 1(d)
Fig. 1. Illustration of the grid-cloud-fraction method. The sky image was taken at 12:00pm o
each square grid element.
illustrates an example of SACI cloud detection.
3.4. DNI forecasting models

The implementation of a deterministic DNI forecasting model
(Det) and amultilayer perceptron network forecastingmodel (MLP)
is discussed in this section.
3.4.1. Deterministic forecasting model
Clouds that block the Sun significantly reduce the ground-level

DNI and therefore are crucial for short-term solar forecasts. To
identify the clouds with high relevance to future solar irradiance, a
grid-cloud-fraction method was developed by Marquez and
Coimbra to get numerical information about clouds that move to-
wards the Sun [12].

The grid-cloud-fraction method can be summarized in five steps
[12,19]:

1. Round sky images from fish-eye cameras are projected onto a
flat square space to remove the geometric distortion (Fig. 1(b)).

2. The average velocity of the clouds is generated by the cloud
velocity derivation methods (Section 3.2). The methods provide
average cloud velocity in the sky (Fig. 1(c)).

3. The SACI is used to identify clouds from sky images to produce
binary cloud maps (Section 3.3).

4. A set of grid elements (X1,X2,/,X8) is placed in the reverse di-
rection of the cloud velocity from the Sun position on the binary
cloud map (Fig. 1(d)). In this work, the area of grid elements is
empirically set to 120 (length) � 120 (width) pixels.

5. The cloud indices CIp are computed as the fraction of pixels
identified as cloud in grid element Xp.

The future values of the clear-sky index is expressed as:
n April 5th, 2013. The cloud velocity is derived from PIV method. The CI is computed for
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kt;pðt þ FHÞ ¼
bBpðt þ FHÞ
Bclcðt þ FHÞ ¼

�
STðtÞ�1� CIpðtÞ

�þ CIpðtÞ$CTðtÞ
�
(4)

where FH is the forecast horizon, bB is the predicted DNI for future
time, and ST and CT are the sky and cloud transmittance, respec-
tively. Empirically, p ¼ 3 based on the forecast results in Ref. [12]
and in this work.
3.4.2. MLP forecasting model
The multilayer preceptron neural network (MLP) is capable of

performing arbitrary non-linear mappings [1,42] and is used to
forecast DNI. The MLP consists of one input layer, several hidden
layers and one output layer. Each hidden layer consists of several
neurons e the processing elements. Chu et al. [15] optimized the
structure of the MLP using a genetic algorithm [10,43,44]. As sug-
gested by Chu et al. [15], an MLP structure with a single hidden
layer containing 7 neurons is selected for this work. For a single
hidden layer MLP, the data processing by each neuron on the hid-
den layer is [45]:

Yi ¼ f

0@XJ
j¼1

�
wijXj þ bij

�1A; (5)

where Yi is the output of the i-th neuron, f(,) is the sigmoidal
activation function f(z)¼1/(1 þ exp(�z)), J is the number of inputs,
and wij and bij are the weight and bias of the j-th input on the i-th
neuron. The outputs from each neuron are then processed to
generate the outputs of the MLP:

Zk ¼ f

 XI
i¼1

ðwkiYi þ bkiÞ
!
; (6)

where Zk is the k-th output of the MLP, I is the number of neurons,
andwki and bki are the weight and bias of the i-th neuron output on
the k-th MLP output. The weightswij,wki, bij and bki are determined
by a supervised learning process using the training data set. The
weights are optimized to achieve minimum root mean square error
(RMSE) between the MLP outputs Z and the training targets Zt:

MLPf ¼ argminMLPRMSE
�
Z;Zt

�
: (7)

The predictions from the trained MLP with new inputs are then:

bZ ¼ MLPf ðXnewÞ: (8)

The Bootstrap sampling method is implemented with the MLP
to generate more accurate predictions. The Bootstrap method
randomly samples the training set (with replacement) to generate
N different training sets. N is set to 200 in this work as suggested by
Carney et al. [46]. Then each of the n-th re-sampled sets is used to
train an MLPn. The ensemble prediction is thus the average of all N
MLPs predictions:

bZ ¼ 1
N

XN
n¼1

MLPnðXnewÞ: (9)

Nine inputs are selected for the MLP model: the cloud indices
CI2~ CI5 (corresponding to the 2 ~ 5 grid elements) based onthe
direction of cloud velocity, the magnitude of cloud velocity jV j, the
measured current clear-sky index kt(t), the sky transmittance ST,
the cloud transmittance CT and the forecast horizon FH.

All the nine inputs are evaluated at the current time. The MLP
output is the predicted future clear-sky index bktðt þ FHÞ.

3.5. Assessment metrics

We employ three statistical metrics to assess the accuracy of the
DNI forecasts: mean biased error (MBE), mean absolute error (MAE)
and root mean square error (RMSE).

MBE ¼ 1
M

XM
m¼1

�bBðtmÞ � BðtmÞ
	

(10)

MAE ¼ 1
M

XM
m¼1






bBðtmÞ � BðtmÞ





 (11)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

�bBðtmÞ � BðtmÞ
	2vuut ; (12)

where M is the number of data points in the testing set.

4. Results and discussion

4.1. Effect of the real-time cloud and sky transmittances

The effect of real-time sky and cloud transmittances on the ac-
curacy of DNI forecasts is studied. Forecasts with invariant and real-
time transmittances as inputs are compared and the results are
presented in Table 1. Manually detected cloud velocity is used as
input to the Det and MLP forecasting models to generate the 5-, 10-
and 15-min ahead forecasts. When invariant transmittance is
incorporated, the CT and ST in Eqs. (1) and (2) are set to be 0 and 1,
respectively. The forecasting results are calculated using the testing
data set.

4.1.1. Deterministic model forecasts
The columns 9~ 11 of Table 1 show over 72.7% improvements on

MBE, over 19.9% improvements on MAE and over 16.3% improve-
ments on RMSE when real-time transmittances are incorporated to
the Det model. Significant improvements of MBE indicate that
incorporating real-time transmittances substantially reduces the
negative bias in the DNI forecasts. Fig. 2 shows the histogram of the
real-time ST and CT in our testing set. The presence of aerosols
results in ST < 1 for 82.2% of the testing period. For over 41.5% of the
period tested, the ST equals to 0.90. Instances in which CT ¼ 0
(clouds absorb all solar irradiance) account for 46.7% of the period.
For the remaining 53.3% of the testing period, CT ranges from 0.1 to
0.7.

Eq. (4) shows that DNI forecasts are an increasing function of the
ST and CT. Therefore, compared with the invariant transmittances
case (ST ¼ 1 and CT ¼ 0), when CT > 0, the DNI forecasts will in-
crease while when ST < 1, the DNI forecasts will decrease. Since we
selectively study partly-cloudy periods in this work, the DNI fore-
casts are mostly influenced by the CT rather than the ST. Therefore,
the influence of increased CT outperforms the decreased ST,
resulting in higher predicted values for DNI and higher MBE.

4.1.2. MLP model forecasts
As presented in Table 1, incorporating real-time transmittances

in the MLP model results in improvements over 19.4%, 2.2% and
0.8% for MBE, MAE and RMSE of the forecasts, respectively. The
improvements of the MLP model are not as significant as the Det
model because the stochastic MLP model can correct the trans-
mittance information by adjusting the weights.



Table 1
5-min, 10-min and 15-min ahead DNI forecast results.

FH (mins) Invariant transmittances Real-time transmittances Improvements

MBE (W/m2) MAE (W/m2) RMSE (W/m2) MBE (W/m2) MAE (W/m2) RMSE (W/m2) DMBE (%) DMAE (%) DRMSE (%)

Det 5 �147.9 298.1 388.8 �40.4 235.3 325.3 72.7 21.0 16.3
10 �144.5 294.0 385.9 �37.2 235.5 321.8 74.3 19.9 16.6
15 �135.8 298.3 388.4 �28.7 235.0 319.2 78.9 21.2 17.8

MLP 5 �40.4 173.1 224.5 �22.9 169.3 222.7 43.3 2.2 0.8
10 �43.2 182.0 234.2 �34.8 176.6 227.2 19.4 2.9 3.0
15 �45.6 198.8 252.6 �28.8 188.2 236.8 36.8 5.3 6.2

Improvements of MLP over Det D MBE (%) DMAE (%) DRMSE (%) DMBE (%) DMAE (%) DRMSE (%)

5 72.7 41.9 42.3 43.3 28.1 31.5
10 70.1 38.1 39.3 6.4 25.0 29.4
15 66.4 33.4 35.0 �0.5 19.9 25.8
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The improvements of the MLP model over the Det model are
presented in Table 1. The MLP forecasts outperform the Det fore-
casts in all metrics. When invariant transmittances are used, the
improvements of MBE, MAE and RMSE are over 66.4%, 33.4% and
35.0%, respectively. When using real-time transmittances, the im-
provements are over �0.5%, 19.9% and 25.8% of MBE, MAE and
Fig. 2. Histogram of real-time ST and CT in the testing set.
RMSE, respectively. The improvements of the MLP model over the
Det model are larger with invariant transmittances than with real-
time transmittances.

Fig. 3 plots the accumulated distributions of 10-min ahead
forecasting errors of the Det and the MLP models with invariant
and real-time transmittances. The Det model with real-time
transmittances and the MLP model outperforms the Det model
with invariant transmittances in the entire error range (0e900 W/
m2). The Det model with real-time transmittances has more in-
stances that fall in the small error range (0e80W/m2) than theMLP
model. The MLP model outperforms the Det model for the large
error (80 W/m2 - 900 W/m2). Therefore, the stochastic MLP model
achieves lower MAE and RMSE than the Det model by reducing the
large forecasting errors. Incorporating real-time transmittances in
the MLP model only achieves limited improvements on the accu-
racy of forecasts.
4.2. Comparison of the cloud velocity derivation methods

The velocity derivation accuracies of SIFT, OF, X-corr and PIV
methods are evaluated by comparing their derived cloud velocities
with manually detected velocities. A velocity is deemed accurate if
it is within the uncertainty ranges of manual detection, which are
±20+ in direction and ±10 pixel/min in magnitude.

The sample time series of the derived cloud velocity are shown
in Fig. 4. The measured clear-sky index, the derived velocity
Fig. 3. Accumulated distribution of 10-min ahead DNI forecasting errors of the Det and
the MLP models, with invariant and real-time transmittances.



Fig. 4. Sample time series of the cloud velocity derived from representative methods.
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direction and the derived velocity magnitude are plotted with
respect to time in Fig. 4 (a), (b) and (c), respectively. All methods
perform well during partly-cloudy periods (13:30 ~ 16:00). During
clear period (13:00 ~ 13:30), the variation between two consecutive
sky images is small. So the applied methods are unable to identify
useful features to detect the cloud movements, resulting in large
velocity derivation errors.

The accuracies of the cloud velocity derivation methods in the
data set are presented in Table 2. PIV has the highest accuracy of
83.9%, followed by 83.5% for OF, 79.2% for X-corr and 60.9% for SIFT.
The Random method has the lowest accuracy of only 7.6% (its ac-
curacy is based on the direction of velocity only). The results of 10-
min ahead DNI forecasts using the cloud velocity derived from each
method are presented in Table 2. The manually detected velocities
are regarded as ‘ground truth’ and the corresponding DNI forecast
results are listed as a reference.

The Pearson product moment correlation coefficients (Pearson-
r) [47] between the accuracies of velocity derivations and the DNI
forecast results are presented in Table 2 as well. When the accuracy
of DNI forecasts is strongly correlated with the accuracies of cloud
velocity, a negative correlation coefficient close to �1 should be
expected (more accurate velocity leads to more accurate DNI
forecasts with smaller MBE, MAE and RMSE). The Pearson-r of MAE
and RMSE of DNI forecasts are smaller than�0.45 for the Detmodel



Table 2
10-min ahead DNI forecast results using cloud velocity derived from representative methods.

Methods Accuracy (%) Invariant transmittances Real-time transmittances Improvements

MBE (W/m2) MAE (W/m2) RMSE (W/m2) MBE (W/m2) MAE (W/m2) RMSE (W/m2) DMBE (%) DMAE (%) DRMSE (%)

Det SIFT 60.9 �121.6 281.3 373.9 �23.6 222.3 309.1 80.6 21.0 17.3
OF 83.5 �140.8 291.5 383.7 �35.1 233.4 321.0 75.1 20.0 16.3
X-corr 79.2 �128.2 293.2 382.5 �27.7 240.3 325.3 78.4 18.1 15.0
PIV 83.9 �131.3 283.3 377.2 �30.0 230.0 318.3 77.2 18.8 15.6
Random 7.6 �90.0 301.3 396.5 �11.9 246.0 345.0 86.8 18.4 13.0
Ground Truth 100.0 �144.5 294.0 385.9 �37.2 235.5 321.8 74.3 19.9 16.6
Pearson-r 0.98 �0.45 �0.58 0.97 �0.45 �0.70

MLP SIFT 60.9 �40.1 191.0 243.6 �3.4 193.3 246.6 91.5 �1.2 �1.3
OF 83.5 �51.7 192.7 242.7 �27.7 184.5 242.3 46.3 4.2 0.2
X-corr 79.2 �38.0 191.7 248.1 �26.6 195.6 242.7 30.2 �2.0 2.2
PIV 83.9 �28.5 183.4 233.6 �16.0 185.2 240.1 43.9 �1.0 �2.8
Random 7.6 �46.5 213.3 276.9 71.4 211.8 288.1 �53.4 0.7 �4.0
Ground Truth 100.0 �43.2 182.0 234.2 �34.8 176.6 227.2 19.4 2.9 3.0
Pearson-r �0.25 �0.95 �0.94 �0.65 �0.94 �0.99
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and smaller than �0.94 for the MLP model, indicating a strong
correlation of the accuracy of DNI forecasts with the accuracy of
cloud velocity. The Pearson-r is closer to �1 with the MLP model
than with the Det model, indicating that the MLP model has a
stronger dependence on the accurate cloud velocity inputs.
Fig. 5. The DRMSE of 10-min ahead forecasts from the Det model with respect to the
deviations of cloud velocity from ground truth.
4.3. Effect of the cloud velocity on the DNI forecasts

The results from Table 2 are unable to identify the source of DNI
forecast errors, i.e. the errors may result from the input cloud ve-
locity uncertainty or are the baseline errors of the DNI forecasting
models (Table 1). The Det and the MLP models with real-time
transmittances are used to study the effect of cloud velocity on
short-term DNI forecasts.

The baseline error of a DNI forecasting model is defined as the
RMSE from the forecasting model when ‘ground truth’ cloud ve-
locity is incorporated. The baseline forecast errors for 5-min, 10-
min and 15-min ahead forecasts are presented in Table 1.

The increment of RMSE is calculated as the RMSE of forecasts
when use inaccurate cloud velocity as input in the model minus the
baseline error of the model,

DRMSE ¼ RMSE� RMSEL (13)

where the subscript L represents baseline error. Taking 10-min
ahead forecasts as an example, RMSEL ¼ 321.8 W/m2 for the Det
model and RMSEL ¼ 227.2 W/m2 for the MLP model (Table 1).
Fig. 6. DRMSE of the Det model and the MLP model with respect to the deviations of
cloud velocity magnitude from ground truth.
4.3.1. Deterministic model forecasts
The map of DRMSE caused by inaccurate cloud velocity input to

the Det model is shown in Fig. 5. The radial coordinate represents
the cloud indices CIp and the angular coordinate q represents the
deviation of velocity direction from the ground truth. The ground
truth cloud velocity is represented byp ¼ 3 and q ¼ 0+ (denoted
with a circle symbol on Fig. 5).

Incorporating ground truth cloud velocity direction, CI2 (left
cross symbol) indicates the cloud velocity magnitude is under-
estimated by 50%, because the cloud in the 2nd grid element will
shade the Sun instead of the cloud in the 3rd grid element
(Fig. 1(d)). Also CI4 (right cross symbol) indicates the velocity
magnitude is overestimated by 50%. Fig. 6 shows that a 50% un-
derestimation of cloud velocity magnitude results in a 97.2 W/m2

(30.2%) RMSE increase and a 50% overestimation results in a
22.6 W/m2 (7.0%) RMSE increase.

Fig. 7 plots the D RMSE with respect to the deviation of velocity



Fig. 7. DRMSE of the Det model and the MLP model with respect to the deviations of
cloud velocity direction from ground truth.
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direction from ground truth at CI3 (ground truth cloud velocity
magnitude is used). The error in determining the cloud velocity
direction can result up to a 68W/m2 (21.1%) RMSE increase. Smaller
errors in velocity direction derivation can have a large impact. For
instance, a ±30+ deviation increases the forecast RMSE by 20W/m2

(6.2%).
4.3.2. MLP model forecasts
Fig. 8 shows that the DRMSE of the MLP model increases with

respect to the deviations of both the cloud velocity magnitude and
the direction from the ground truth.

To study the effect of cloud velocity magnitude, Fig. 6 plots the
DRMSE with respect to the derivation of velocity magnitude
(ground truth cloud velocity direction is used). The error in deter-
mining the cloud velocity magnitude can result in a 115 W/m2
Fig. 8. DRMSE with respect to the deviations of cloud ve
(50.6%) RMSE increase. As seen in Fig. 4, the four methods used for
deriving the cloud velocity tend to underestimate the cloud ve-
locity magnitude. Underestimating the velocity magnitude by 50%
increases the forecast RMSE by 55 W/m2 (24.2%) while over-
estimating it by 50% increases the RMSE by 19 W/m2 (8.4%).

To study the effect of cloud velocity direction, Fig. 7 shows the
DRMSE with respect to the derivation of velocity direction from
ground truth (the ground truth velocity magnitude is used). The
error in determining the cloud velocity direction can result in a
50 W/m2 (22.0%) RMSE increase. Small errors such as a ± 30+ de-
viation of cloud velocity direction increases the forecast RMSE by
15 W/m2 (6.6%).
5. Conclusions

In this work, we analyze 5-, 10- and 15-min ahead DNI forecasts
using a deterministic model (Det) and a Bootstrap multilayer per-
ceptron networkmodel (MLP). Both invariant and real-time sky and
cloud transmittances are used as inputs for comparison. Cloud
velocity uncertainty is also used as input to quantify the impact of
velocity input on the DNI forecasts. Eight representative partly-
cloudy days are selected as the data set.

Incorporating real-time transmittances in the Det model yields
over 72.7%, 19.9% and 16.3% improvements of MBE, MAE and RMSE
when compared to invariant transmittances. The improvements of
the MLP model are over 19.4%, 2.2% and 0.8% of MBE, MAE and
RMSE, respectively. With real-time transmittances inputs, the
negative bias of the DNI forecasts is substantially reduced and the
accuracies of both the Det and the MLP models are improved.

The accuracies of the four cloud velocity derivationmethods and
their correlations with forecast errors are analyzed. PIV is the most
accurate and has an accuracy of 83.9% during the studied partly-
cloudy periods. OF, X-corr and SIFT methods have 83.5%, 79.2%
and 60.9% accuracies, respectively. The MAE and RMSE of 10-min
ahead DNI forecasts are highly correlated with the accuracies of
cloud velocity derivation. The Pearson correlation coefficients are
locity direction and magnitude from ground truth.
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smaller than �0.45 (Det) and �0.94 (MLP).
The effect of cloud velocity on the accuracy of 10-min ahead DNI

forecasts with real-time transmittances inputs is quantitatively
evaluated using both the Det and the MLP model. A 50% underes-
timation of cloud velocity magnitude increases the forecast RMSE
by 30.2% (Det) and 24.2% (MLP). A 50% overestimation results in a
7.0% (Det) and an 8.4% (MLP) increase. A ± 30+ deviation of velocity
direction increases the forecast RMSE by 6.2% (Det) and 6.6% (MLP).

In summary, this work quantifies the impact of cloud trans-
mittance and cloud velocity on short-term DNI Forecasts. Both
deviations in cloud velocity and invariant sky and cloud trans-
mittances increase the errors of short-term DNI forecasts. It is
recommended to incorporate real-time sky and cloud trans-
mittances to the forecasting models and calibrate the cloud velocity
derivations in order to increase forecast fidelity.
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Appendix

The dataset is randomly divided into a training set and a testing
set to train the MLP model in this work. To justify the MLP results,
another data sets dividing scenario using the beginning three-
fourth of each day as training set and the rest of the day as
testing set is compared. As seen in Table A1, the difference of two
scenarios are less than 5.1% in terms of RMSE, indicating that our
original MLP model did not over-trained.
Table A1
5-min, 10-min and 15-min ahead DNI forecast results.

FH,
min

Invariant transmittance Historical transmittance

RMSE of
MLP Original,
W/m2

RMSE of
MLP new,
W/m2

Difference,
%

RMSE of
MLP Original,
W/m2

RMSE of
MLP new,
W/m2

Difference,
%

5 224.5 220.3 1.9 222.7 218.7 1.8
10 234.2 229.6 2.0 227.2 223.1 1.8
15 252.6 239.6 5.1 236.8 243.0 �2.6
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