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A B S T R A C T

Since directly measuring beam and diffuse irradiance is not feasible on many occasions, one often has
to resort to estimating the beam and diffuse irradiance components from the global irradiance, which is
known as separation modeling. Separation modeling is essentially a nonlinear regression problem, with the
clearness index being the main input and the diffuse fraction being the output. Hundreds of separation models
with various complexities have been proposed, among which the Yang4 model was recently validated using
worldwide data as the quasi-universal choice for 1-min data. In this work, Yang4 is further improved by regime-
dependent fitting, i.e., fitting a separate set of model coefficients for each climatological regime. Different
regimes are determined through clustering of cloud cover frequency, aerosol optical depth, and surface albedo
climatology maps. The new Yang5 model is able to outperform its predecessor at the 126 stations tested,
covering a wide range of climate types. Overall, the normalized root mean square errors for beam normal
irradiance (BNI) and diffuse horizontal irradiance (DHI) of Yang5 are 17.55% and 32.92% on average, as
compared to 19.13% and 34.94% for the next best model, namely, Yang4. Furthermore, through conducting
pairwise Diebold–Mariano tests, Yang5 is shown superior to Yang4 at 110/126 sites for BNI prediction and

93/126 for DHI.
1. Introduction

In solar energy meteorology, a fundamental relationship between
solar radiation components is the closure equation, which states the
fact that the global horizontal irradiance (GHI) is constituted of a beam
component and a diffuse component:

𝐺ℎ = 𝐵𝑛 cos𝑍 +𝐷ℎ = 𝐵ℎ +𝐷ℎ, (1)

where 𝐺ℎ, 𝐵𝑛, 𝐵ℎ, and 𝐷ℎ are GHI, beam normal irradiance (BNI), beam
horizontal irradiance (BHI), and diffuse horizontal irradiance (DHI),
respectively; and 𝑍 is the solar zenith angle, which can be computed
deterministically via a solar position algorithm, such as the SG2 al-
gorithm [1]. Notwithstanding, measuring or estimating all irradiance
components is often seen as a tedious and costly task. Consequently,
under the frequent situations where only GHI is available, either from
radiometric measurement or retrieved from remote-sensing data, one
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often obtains the other unknown components through what is known as
‘‘separation’’ or ‘‘decomposition’’ modeling. Separation modeling is an
important stage of the model chain, which serves to convert irradiance
to photovoltaic power, and thus is profoundly useful for solar resource
assessment [2–4] and forecasting [5–7].

Since surface radiation components exhibit both a diurnal cycle and
a seasonal cycle as a result of the changing apparent sun–earth position,
it is customary to perform solar modeling on normalized quantities.
In separation modeling, specifically, the two most relevant normalized
quantities are the diffuse fraction 𝑘 which is the ratio between DHI
and GHI (i.e., 𝑘 = 𝐷ℎ∕𝐺ℎ), and the clearness index 𝑘𝑡 which is the
ratio between GHI and its extraterrestrial counterpart (i.e, 𝑘𝑡 = 𝐺ℎ∕𝐸0,
where 𝐸0 is the extraterrestrial GHI). Stated differently, separation
models seek to estimate 𝑘 using 𝑘𝑡 and some other auxiliary variables.
Early separation models are often simply as univariate functions of 𝑘𝑡,
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Nomenclature

Abbreviations

AOD aerosol optical depth
AST apparent solar time
BHI beam horizontal irradiance
BNI beam normal irradiance
DHI diffuse horizontal irradiance
ECMWF European Centre of Medium-Range Weather Fore-

cast
ERA5 fifth-generation ECMWF Reanalysis
GHI global horizontal irradiance
IEA International Energy Agency
KGC Köppen–Geiger climate classification
MERRA-2 Modern-Era Retrospective Analysis for Research

and Applications, version 2
MODCF MODIS-based cloud frequency
MODIS Moderate Resolution Imaging Spectroradiometer
nMBE normalized mean bias error
nRMSE normalized root mean square error
PCA principal component analysis
PVPS Photovoltaic Power Systems Programme
RCC radiation climate classification

Notations

𝛼 90◦ −𝑍, elevation angle [degree]
𝛥𝑘𝑡𝑐 𝑘𝑡𝑐 − 𝑘𝑡, difference between the clearness index

of clear-sky global horizontal irradiance and the
clearness index [dimensionless]

𝜓 three-point moving average of 1-min 𝑘𝑡 [dimen-
sionless]

𝐵ℎ beam horizontal irradiance [W/m2]
𝐵𝑛 beam normal irradiance [W/m2]
𝐷ℎ diffuse horizontal irradiance [W/m2]
𝐸0 extraterrestrial global horizontal irradiance

[W/m2]
𝐺csky clear-sky global horizontal irradiance, obtained

from the McClear database [W/m2]
𝐺ℎ global horizontal irradiance [W/m2]
𝑘 𝐷ℎ∕𝐺ℎ, diffuse fraction [0–1]
𝑘(𝑠) hourly or half-hourly satellite-derived diffuse

fraction [0–1]
𝑘csi 𝐺ℎ∕𝐺csky, Starke’s quantifier for cloud enhance-

ment [dimensionless]
𝑘Engerer2

hourly hourly diffuse fraction estimate, obtained by
applying Engerer2 to hourly data [0–1]

𝑘𝑡 𝐺ℎ∕𝐸0, clearness index [dimensionless]
𝑘𝑑𝑒 max

(

0, 1 −
𝐺csky
𝐺ℎ

)

, part of the diffuse fraction that
is attributed to cloud enhancement [dimension-
less]

𝑘𝑡,daily daily average of 𝑘𝑡 [dimensionless]
𝑘𝑡,hourly hourly average of 𝑘𝑡 [dimensionless]
𝑘𝑡𝑐 𝐺csky∕𝐸0, clearness index of clear-sky global

horizontal irradiance [dimensionless]
𝑍 zenith angle [degree]

such as the often-cited Erbs model [8], which consists of a piecewise
inear function of 𝑘𝑡 determined empirically using hourly irradiance
ata. (Following the convention, model names are written in Small Caps,
2

and in cases where multiple versions of the same model are available,
a number is appended to distinguish them.) Over time, the modeling
philosophy of separation models has advanced substantially, and it has
become a commonly accepted fact that selecting auxiliary variables
and performing feature engineering are both absolutely vital when
constructing a high-performance separation model.

Another notable evolution is with respect to time scale. Initially,
separation modeling was mostly conducted on hourly, daily, or even
monthly data. However, considering the need for high accuracy and
detail in current solar applications, the value of irradiance data at
such coarse temporal resolutions now appears excessively limited, to
the point where such models have become increasingly outdated or
less useful. In contrast, those separation models for solar applications
that have appeared since 2015 almost always utilize 1-min data. Com-
pared to the older hourly time scale norm, this 60-fold increase in
temporal resolution offers a considerable advantage of resolving high-
frequency features, such as those caused by cloud-enhancement and/or
albedo-enhancement events [9], which are not observable on an hourly
basis.

Due to the combinatorial flexibility of input parameters as well as
the source data used for model fitting and diagnosis, a large number
of models with different degrees of sophistication and generalization
abilities have been proposed, which has led to a heated debate on
‘‘what constitutes a good separation model?’’ Most certainly, insofar as
predictive models are concerned, accuracy often comes as the foremost
criterion of judgment. In the past, however, the conditions reported in
one work always differed from those in another, in terms of location,
time period, and modeling philosophy; hence, a fair comparison of
model performance was not possible. The year 2016 marked a turning
point, when Gueymard and Ruiz-Arias [10] compared a total of 140
separation models available then, using 1-min data from 54 research-
grade radiometric stations spread across all seven continents and on
islands in all four oceans. The scale of that work was unprecedented in
terms of both the number of stations and the number of models com-
pared. The conclusion made therein was that the Engerer2 model [11]
could be considered quasi-universal because it attained the best overall
predictive performance. Logically speaking, for any model proposed
since, surpassing the performance of Engerer2 becomes a key criterion,
which is why most separation models proposed post 2016 use Engerer2
as a benchmark.

Separation modeling is a fast-advancing field, and many new mod-
els have emerged since 2016, rendering the former question on the
best separation model again opaque. For instance, Bright and Engerer
[12] performed a re-parameterization of Engerer2 using more data
points from more stations, and on more time scales, namely, 5, 10,
15, 30 min, 1 h, and 1 day. Besides, Starke et al. [13,14] proposed
regime-dependent separation models under the framework of the BRL
model [15], which employs a logistic function to account for the
correspondence between 𝑘 and 𝑘𝑡. A third example is the machine-
learning-based model combination proposed by Aler et al. [16], who
combined the predictions from the 140 models reviewed in Gueymard
and Ruiz-Arias [10] with extreme gradient boosting as a regression
tool. All these and other latest developments in the field, as well as the
pros and cons associated with each innovation, have been summarized
by Yang and Gueymard [17]. That review attempted to perform an
unbiased comparison of the latest separation models using a common
database, but the scale of validation was relatively small (i.e., only data
from 11 sites spanning 1 year were used).

Two years after the publication of Yang and Gueymard [17], an-
other larger-scale validation work was performed by Yang [18]. In that
work, more than 80 million valid 1-min data points from a total of
126 sites worldwide, covering a period of 2016–2020, were used. The
data were prepared as a joint effort of the members of the Interna-
tional Energy Agency (IEA), Photovoltaic Power Systems programme
(PVPS), Task 16, which is an international collaborative research and

development initiative established within the IEA and with its member
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states. The 126-station database, which benefited from a thorough
and state-of-the-art quality-control process [19], appears as the most
comprehensive to date, and therefore must be regarded as rightly
authoritative. Consequently, it can be stated that whichever model
obtains the best overall statistical performance on this database can
be considered quasi-universal. A total of ten recent separation models
entered the contest, and the one proposed by Yang [20], namely, the
Yang4 model, attained the highest rank. The modeling philosophy of
Yang4 is based on the so-called ‘‘temporal-resolution cascade,’’ which
uses the preliminary 𝑘 estimate from a low-resolution (i.e., 1 h) sepa-
ration model as an input to the high-resolution (i.e., 1 min) separation
model.

Despite its success, Yang4 has room for improvement. Firstly, its
coefficients are fitted using data from only seven mid-latitude sites.
Hence, they do not cover all the many other climatic or weather
conditions outside the fitting data. As has been shown repeatedly,
conditioning (also known as regime-dependent fitting) as a strategy is
highly rewarding [14,21,22]. Conditioning means that different sets of
model coefficients are empirically fitted using data corresponding to
different regimes (e.g., climates), such that the fitted coefficients can
best adapt to the condition-specific features embedded in the data.
It is on this account that this work attempts to further improve on
the previous Yang4 model by following this conditioning approach,
which constitutes the main merit. In addition to that, the three-factor
clustering method used to determine the radiation regimes is another
novelty here. As discussed in Section 4.1, this regime-dependent mod-
eling approach is indeed beneficial, making the new model outperform
Yang4 by a significant margin, hence qualifying this development as a
substantial contribution to the separation modeling literature.

2. Method

2.1. Input parameters

Before elaborating on the regime-dependent modification to Yang4,
a short review of the previous development of the Yang family of
models is first presented. To facilitate the discussion, some useful input
parameters have been summarized in the nomenclature section. Among
those parameters, the solar zenith angle (𝑍), solar elevation angle
(𝛼), and apparent solar time (AST) are calculated via a solar position
algorithm; the clear-sky GHI (𝐺csky) can be obtained from the McClear
database1 or similar, and all remaining ones are calculable using GHI.

2.2. Engerer2 model

Engerer2 was historically the first model developed for high-
resolution (1-min) irradiance data [11], taking the transient effects
of cloud enhancement into consideration. More specifically, Engerer2
is a five-predictor model based on the logistic function, which at-
tempts to reproduce the whole extent of the observed 𝑘–𝑘𝑡 space. The
mathematical form of Engerer2 is given by:

𝑘Engerer2 = 𝐶 + 1 − 𝐶
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐

+ 𝛽5𝑘𝑑𝑒, (2)

where the model coefficients 𝐶 = 0.042336, 𝛽0 = −3.7912, 𝛽1 = 7.5479,
𝛽2 = −0.010036, 𝛽3 = 0.003148, 𝛽4 = −5.3146, and 𝛽5 = 1.7073 were fitted
with 1-min irradiance data from six radiometric stations in Australia.
Variable 𝑘𝑑𝑒 represents the fraction of 𝑘 that is induced by cloud
enhancement; this positive quantity is estimated as a simple function
of 𝑘csi, which is the ratio of GHI and clear-sky GHI. The other model
inputs can be considered conventional because they have appeared in
several previous models [e.g., 15,23].

1 https://www.soda-pro.com/web-services/radiation/cams-mcclear
3
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2.3. Evolution of the Yang family of models

Based on the construct of Engerer2, two separation models named
Yang1 and Yang2 were proposed by Yang and Boland [24], who in-
troduced the satellite-derived diffuse fraction, 𝑘(𝑠), as an additional
predictor. Yang1 includes 𝑘(𝑠) as an additive trend component, whereas
Yang2 adds 𝑘(𝑠) as part of the main effect, i.e., inside the exponential
term of the logistic function. Mathematically,

𝑘Yang1 = 𝐶 + 𝐿
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐

+ 𝛽5𝑘𝑑𝑒 + 𝛽6𝑘(𝑠), (3)

where 𝐶 = 0.0369, 𝛽0 = −3.4986, 𝛽1 = 7.9735, 𝛽2 = −0.0030, 𝛽3 = 0.0031,
𝛽4 = −7.6836, 𝛽5 = 1.0179, 𝛽6 = 0.3505 and 𝐿 = 0.6768, and

𝑘Yang2 = 𝐶 + 1 − 𝐶
1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐+𝛽6𝑘(𝑠)

+ 𝛽5𝑘𝑑𝑒, (4)

where 𝐶 = 0.0361, 𝛽0 = −0.5744, 𝛽1 = 4.3184, 𝛽2 = −0.0011, 𝛽3 = 0.0004,
𝛽4 = −4.7952, 𝛽5 = 1.4414, and 𝛽6 = −2.8396. The model coefficients of
both Yang1 and Yang2 were fitted using data from seven stations in the
United States.

Using half-hourly and hourly satellite-derived diffuse fraction was
found to improve accuracy, for it can be regarded as a low-frequency
version of the actual diffuse fraction. Conceptually, the strategy is
highly similar to using a variability index in many former models,
see [10] for a list. Furthermore, due to the worldwide availability of
such data—see [25] for a review—satellite-augmented models can be
applied at most locations, except for the high-latitude regions where
high-resolution cloud information is missing because the images from
geosynchronous satellites do not resolve. However, many satellite-
derived irradiance databases are not updated in real-time (particularly
those in the public domain). Hence, Yang1 and Yang2 are unsuitable for
real-time applications, as is also the case with many other separation
models that use time-averaged inputs.

To remedy the situation, [20] proposed replacing 𝑘(𝑠) in Yang2
with a low-frequency estimate of diffuse fraction calculated from En-
gerer2, which led to Yang3 and Yang4. This modeling strategy is termed
temporal-resolution cascade, for it uses sequentially two separation
models at different temporal resolutions. Since Yang4 performs better
than Yang3 and the only difference between them is the temporal
resolution of the Engerer2-derived diffuse fraction, the latter one is
not thoroughly discussed here. Denoting the hourly diffuse fraction
estimate using Engerer2 as 𝑘Engerer2

hourly , Yang4 reads:

𝑘Yang4 = 𝐶 + 1 − 𝐶

1 + 𝑒𝛽0+𝛽1𝑘𝑡+𝛽2AST+𝛽3𝑍+𝛽4𝛥𝑘𝑡𝑐+𝛽6𝑘Engerer2
hourly

+ 𝛽5𝑘𝑑𝑒, (5)

here all coefficients are inherited from Yang2 without modification.
s mentioned in the introduction, Yang4 has been identified as the new
uasi-universal model in the überreview and comparative validation
onducted by Yang [18]. That said, a deficiency of Yang4 is that its
odel fitting is limited to stations in the contiguous United States,

eaving room for improvement on the adequacy and universality of
odel coefficients [24]. To address this important concern, the regime-
ependent version of Yang4, which is named Yang5, is introduced
ence.

.4. A new avenue: Regime-based model fitting

The basic idea of this work is to create a model with coefficients
hanging in accordance with different regimes. Whenever the phrase
‘climate regime’’ is mentioned in solar energy meteorology, it generally
efers to the Köppen–Geiger climate classification (KGC); this is indeed
he choice of Starke et al. [14], who fitted a separate set of model
oefficients for each major class of KGC. However, defining regime with
GC may attract skepticism, since KGC is based primarily upon seasonal

emperature and precipitation, which do not necessarily reflect the dif-
erences in the long-term statistical behavior of solar radiation, e.g., two

ocations with different KGC classes may share a radiation regime with

https://www.soda-pro.com/web-services/radiation/cams-mcclear
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similar annual mean and variance. Since separation modeling deals
with irradiance, rather than temperature or precipitation, it is herein
argued that regime-dependent separation models based on KGC might
be helpful to some extent, but overall insufficient if not inadequate.
Consequently, alternative conditioning variables must be sought.

Whenever influencing factors to surface radiation are thought of,
cloud properties must be regarded as the primary ones. Although high
cirrus clouds are almost transparent to shortwave radiation, medium
and low cumulus or stratus clouds attenuate or scatter most of the
incoming radiation. That is why detailed information on cloud type,
amount, and frequency is key to virtually all solar radiation modeling.
Cloud processes are also intimately tied to the short-term variability
of solar irradiance, which contributes most to modeling uncertainty.
Indeed, various studies have documented the dependence on cloud
cover of radiation modeling accuracy [e.g., 26–28]. For that reason,
cloud cover frequency is selected as the first conditioning variable.
It should be noted, however, that cloud cover frequency is only a
very crude proxy of the actual cloud dynamics, which are exceedingly
complex.

The second conditioning variable selected in this work is aerosol
optical depth (AOD), which is the most relevant quantity influencing
the surface radiation under a cloud-free atmosphere. Particularly for
arid areas with low cloudiness but prevalent medium-AOD to high-
AOD situations and frequent sand or dust storm episodes of extremely
high AOD, the effect of aerosols is noteworthy. At present, the foremost
representative application of aerosol data in solar energy meteorol-
ogy ought to be clear-sky modeling—almost all physics-based high-
performance clear-sky radiation models rely on various sorts of aerosol
inputs [29,30]. In parallel, aerosols also act as cloud condensation
nuclei and ice nuclei, which are key to the formation of clouds. That
is, besides the primary effect of attenuation, aerosols also have a
secondary (i.e., indirect) effect on radiation through affecting clouds.

The third conditioning variable considered here is surface albedo,
which is the ratio of upwelling and downwelling global irradiance at
the surface—a fraction between 0 and 1, see [31] for precise defini-
tions. It is well known that a portion of the radiation reaching the
Earth’s surface is reflected back to the atmosphere, and through a
process known as backscattering, a part of it returns to the surface. It is
clear from simple observation and basic physics that the backscattering
process is stronger when the ground surface is more reflective, which
leads to the so-called ‘‘albedo enhancement’’ effect [31]. This phe-
nomenon is particularly prominent under high cloudiness, which can
lead to its combination with cloud enhancement effects, thus generating
large variations in short-term irradiance. For instance, the observable
impact on the diffuse fraction of situations of high surface albedo
combined with high cloudiness was exemplified for a mountain site
by Gueymard and Ruiz-Arias [10]. Considering the goal of regime-
based separation modeling, the spatial variations in surface albedo
should have a noticeable impact on modeling accuracy.

Besides cloud cover, aerosol, and surface albedo, there are many
other meteorological variables that can be deemed useful in defin-
ing irradiance regimes. This is because ultimately, in meteorology,
everything is related to everything. One can access a rich collection
of meteorological variables from modern reanalysis products, so data
availability is not of concern. However, as compared to cloud, aerosol,
and surface albedo, the effects of other meteorological variables are
mostly secondary or tertiary. For instance, although water vapor ab-
sorption can reduce clear-sky radiation by tens of W/m2 [32], this
reduction is smaller than that caused by clouds or aerosols. Addi-
tionally, the two most important indirect effects of water vapor on
radiation, namely, cloud formation or modification of aerosol size [33],
are also accounted for by clouds and aerosols themselves. Therefore,
it is thought that the three selected variables are sufficient for the
first attempt to create a radiation climate classification for separation
modeling, although such a choice may not be optimal, and is worth
4

investigating further in future works.
All three selected influencing factors vary in both space and time,
and thus the corresponding data can be viewed as a time series of
lattice processes. Theoretically, it is possible to not only segregate the
meteorological regimes in terms of space, but also in terms of time,
e.g., one set of model coefficients for each season, monsoon, or even
month. This nonetheless greatly increases the dimensionality of the
problem at hand. Recalling that previous regime-dependent separation
models just use KGC, which is only distributed over spatial locations,
the current work should follow that and consider only regimes defined
over space but not time. In any case, a time-dependent classification
would add much higher complexity to the model, as well as difficulty
of operational implementation. For that reason, climatological values
on an annual basis are deemed sufficient in this work—even though
higher-frequency climatologies might also be worth exploring in the
future. In summary, climatology maps of annual cloud cover frequency,
aerosol optical depth, and surface albedo are used as raw data defining
distinct radiation regimes, but they must first undergo some form of
data fusion, such that the overall regimes are results of integrating and
balancing of the information contained in all three factors. Clustering is
chosen for this task. Clustering is a data-science technique that divides
samples into groups in an unsupervised fashion such that the members
within each group are more similar to one another than to members in
other groups [34]. Once the model coefficients for a certain cluster are
fitted, the coefficients are expected to perform well for other locations
with that same regime.

Numerous clustering algorithms exist in the literature and their
standard implementations in popular statistical software tools are avail-
able in bulk. For instance, the NbClust package of R implements
several different clustering methods, among which the most prevalent
𝑘-means clustering [35] is considered. Since the 𝑘-means algorithm is
well known and much information is available elsewhere, this work
does not reiterate its technical details in full. One should just be aware
that 𝑘-means clustering seeks to partition 𝑛 samples into 𝑘 (𝑘 ≤ 𝑛)
clusters, denoted by  = {1,2,… ,𝑘}, in such a way that the
within-cluster variance is minimized. Mathematically, the optimization
problem is

argmin


𝑘
∑

𝑖=1

∑

𝐱∈𝑖

‖

‖

𝐱 − 𝝁𝑖‖‖
2 = argmin



𝑘
∑

𝑖=1
|𝑖|V

(

𝑖
)

, (6)

where 𝒙 denotes a sample, 𝝁𝑖 is the center of the 𝑖th cluster (i.e., the
mean of points in 𝑖), |𝑖| is the cardinality of set 𝑖, and V is
the variance operator. As an unsupervised algorithm, the number of
clusters, namely, 𝑘, needs to be specified ex ante. Whereas it is obvious
that the minimum number of clusters must be greater than one, too
large a number of clusters leads to redundant granularity as well, so in
this work, the allowed number of clusters varies between two and ten.

The literature presents an eclectic mix of methods for determining
the optimal number of clusters. Most of these methods rely on some
index, and the optimal number of clusters is arrived at according to
either maximized or minimized metrics of the index (i.e., maximum
value of the index or minimum value of second differences between
levels of the index). In particular, the NbClust package provides a
total of 26 indexes of that sort, but not all have gained wide acceptance
and their reliability has yet to be fully tested. In this work, a total of
seven indexes, namely, ‘‘Cindex,’’ ‘‘Hartigan,’’ ‘‘Ratkowsky,’’ ‘‘Scott,’’
‘‘Friedman,’’ ‘‘McClain,’’ and ‘‘Rubin’’ are jointly used as the basis of
the optimal cluster number selection, which is thoroughly explained
in Section 4.1. Once 𝑘 is fixed, one may proceed to fit the regime-
dependent model coefficients. It should be noted that for any new
location, its corresponding cluster can be determined by the trained
𝑘-means model—the cluster and the separation model coefficients can

thus be identified for any arbitrary location.
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2.5. Benchmarks and evaluation metrics

After the new model is constructed, its accuracy needs to be tested
against measured data and also against other competitive models. To
ensure a fair comparison, four representative separation models are
considered as benchmarks. Since Engerer2 [11] was the best model
before 2016, it must be taken into account. Starke2 is a piecewise
model differentiating cloud enhancement conditions, and Starke3 [14],
s an extension of Starke2, is a high-performance piecewise regime-
ependent model with KGC as a conditioning variable, so they are
ncluded as benchmarks—the model coefficients of Skarke3 are taken
rom Table 3 of [14]. The non-regime-dependent version of the pro-
osed model, namely, Yang4, is also included to evaluate the potential
rogress. Arguably, more models such as those in [10,18] could be
ested, but since they do not outperform Engerer2 or Yang4 in the

respective reviews, they can be assumed to be inferior to these two
models, at least in a general sense.

The process of verification of solar irradiance models is a delicate
undertaking, for which the reader is referred to Yang et al. [36] for a
fully expanded discussion. For the sake of conciseness, the performance
of various separation models under comparison is here simply gauged
on the basis of two widely used error metrics, namely, the normalized
root mean square error (nRMSE) and normalized mean bias error
(nMBE), which, when expressed in percent, are:

nRMSE =

√

1
𝑛
∑𝑛
𝑡=1

[

𝐵𝑛(𝑡) − 𝐵𝑛(𝑡)
]2

1
𝑛
∑𝑛
𝑡=1 𝐵𝑛(𝑡)

× 100, (7)

nMBE =

∑𝑛
𝑡=1

[

𝐵𝑛(𝑡) − 𝐵𝑛(𝑡)
]

∑𝑛
𝑡=1 𝐵𝑛(𝑡)

× 100, (8)

where 𝐵𝑛(𝑡) and 𝐵𝑛(𝑡) are predicted and measured BNI at instance 𝑡,
which indexes the testing samples. Similar metrics for DHI can be
defined by replacing 𝐵𝑛(𝑡) and 𝐵𝑛(𝑡) with �̂�ℎ(𝑡) and 𝐷ℎ(𝑡) respectively.

Historically, mean absolute error (MAE) is also often used to eval-
uate radiation forecasts and predictions. It has been shown recently
that using both RMSE and MAE is inappropriate [5,37,38], for these
two metrics are incompatible with each other under the framework
of statistical consistency in verification. Stated simply, the evaluation
metric should follow the choice of objective function that is used to
optimize the model parameters. For instance, if a model is optimized
by minimizing the squared loss, RMSE is consistent, whereas for an
MAE-optimized model, MAE is consistent. Given the fact that the model
coefficients for all separation models of concern are RMSE-optimized,
using MAE as an evaluation metric is redundant and incorrect. The
same argument extends to other popular error metrics for solar model-
ing. The reader is referred to Gneiting [39], who delivered the seminal
paper that first discusses the consistency issue theoretically.

3. Data

Four different datasets are used in this work. The first one is a
proprietary irradiance dataset from the IEA PVPS Task 16, and is iden-
tical to the one used by Yang [18]. It consists of 1-min ground-based
irradiance measurements from 126 locations worldwide, as necessary
for separation model development and validation. The remaining three
datasets provide climatology maps for annual cloud cover frequency,
aerosol optical depth, and surface albedo, which are used here to
facilitate the cluster analysis, as well as to allow identification of local
regimes for any unseen location of interest.
5

3.1. Ground-based irradiance measurements

The ground-based measurement dataset used in this work has been
thoroughly described by Yang [18]. In short, the raw dataset collected
by members of the IEA PVPS Task 16 is quality-controlled with a set
of stringent filters (see [19] for details), after which more than 80
million valid 1-min data instances remain; each instance comprises
three irradiance components in the closure equation, namely, 𝐺ℎ, 𝐵𝑛,
and 𝐷ℎ, as well as auxiliary variables needed for separation modeling,
such as 𝑍, 𝐺csky, or AST. Fig. 1 depicts the geographical distribution
of these 126 sites, which are overlaid on the world map of Köppen–
Geiger climate classification. Except for a few cold climates, the sites
have good coverage for each climate zone.

Through clustering, the 126 stations are grouped into five clusters,
of which the details are given in Section 4.1. For each cluster, all data
instances from all stations within that cluster are gathered into a data
table, which is subsequently divided into two halves, one for training
and the other for validation. The splitting of data frames adopts ran-
dom sampling without replacement. In usual radiation modeling and
validation, a part of the data should contain ‘‘unseen’’ instances, such
as to demonstrate and test for the generalization ability of the model of
concern. Notwithstanding, considering that the current dataset already
has the best possible inclusion of the currently available research-
grade radiometric stations, the universality of any model fitted and
successfully validated using the current dataset can be assumed with
high confidence.

3.2. Cloud climatology

The cloud climatology data employed in this work comes from Wil-
son and Jetz [40], who integrated 15 years of remote-sensed cloud
observations into climatology maps of 1-km-resolution cloud cover
frequency. The remote-sensed cloud information was originally re-
trieved from twice-daily Moderate Resolution Imaging Spectroradiome-
ter (MODIS) satellite imagery, which reveals cloud dynamics on a
global scale through cloud frequencies (i.e., fraction of days during
a month with a positive cloud flag). Wilson and Jetz [40] showed
that this MODIS-based cloud frequency (MODCF) explains 78% of the
variability in monthly mean cloud frequencies observed on the ground,
with only a 7.99% RMSE between the satellite and ground station cloud
data.

The dataset can be accessed for free from the EarthEnv project,2
which is a collaborative effort intended to construct a database of
standardized 1-km resolution data layers for environmental and cli-
matological research. The MODCF dataset can be obtained either as
monthly files or as a single file containing the annual mean, in Geo-
TIFF format, and the latter is used in this work. The original mean
annual cloud frequency represents the percentage of cloudy days over
the 15-year period, and the highest value is found to be 98.28%.

It is emphasized that all the three climatological datasets used
in this work, namely, MODCF, the aerosol (Section 3.3), and albedo
(Section 3.4) datasets, have differing spatial resolution. Hence, for
consistency and ease of manipulation, it is of interest to standardize
all of them onto the same grid. A common 0.5◦ × 0.5◦ regular grid over
latitude and longitude is selected here as a compromise between spatial
resolution and data storage. The mapping from the original to the new
standard grid uses the nearest neighbor interpolation technique with
an ocean mask to remove regions with improbable solar applications
at a 0.5◦ spatial resolution, and only excludes islands smaller than
bout 1 km2, thus ensuring all 126 sites have climatology data. The
apping grid follows kgc package in R and the reader is referred to the
niversity of Veterinary Medicine website3 for detailed information.

2 http://www.earthenv.org/cloud
3 http://koeppen-geiger.vu-wien.ac.at/present.htm

http://www.earthenv.org/cloud
http://koeppen-geiger.vu-wien.ac.at/present.htm
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Fig. 1. Location of the 126 ground-based stations used in this work, superimposed on a world map of Köppen–Geiger climate classification.
Fig. 2 (a) shows the annual mean cloud frequency, where the color of
a pixel corresponds to how often weather is cloudy at that location in a
year. Since the 𝑘-means algorithm requires its different input variables
to be normalized, which constitutes a fundamental practice in data
science, the cloud cover frequency is normalized to the [0, 1] range,
using the min–max normalization. The final cloud climatology map is
shown in Fig. 2 (b), where darker pixels correspond to locations that
are less cloudy.

3.3. Aerosol climatology

The aerosol climatology dataset used in this work results from
a combination of two products, namely, the climatology developed
by Yang and Gueymard [41] (hereafter, ‘‘Yang–Gueymard’’) and the
Modern-Era Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA-2) [42]. Yang–Gueymard is a monthly AOD climatology
obtained by merging five gridded AOD products, namely, MERRA-2,
Multi-angle Imaging SpectroRadiometer, MODIS-Terra, MODIS-Aqua,
and Visible Infrared Imaging Radiometer Suite; the merging procedure
is complex, and the reader is referred to the original publication for
technical details. It should be noted that data fusion is an important
aspect of any modeling procedure that involves AOD. This is because
each raw remote-sensed AOD dataset contains missing (or inaccurate)
values due to difficulty in retrieval, but when multiple datasets are
combined, missing (or inaccurate) data points from one product can
be filled (or compensated) by those valid data points from another
product, thereby leading to a final product with far fewer missing
values and of higher quality than any single product.

The main AOD variable of interest here is the AOD at 550 nm
(AOD550), which is the standard in solar energy meteorology and
other disciplines. Yang–Gueymard contains monthly AOD550 climatol-
ogy values over the years 2012–2020, at a 1◦ × 1◦ spatial resolution.
One limitation of the Yang–Gueymard climatology is that it only covers
regions between ±60◦ in latitudes. The year-long snow cover at high-
latitude regions, such as Antarctica or Greenland, makes the AOD
retrievals highly inaccurate there. Hence, one has to resort to using
6

Fig. 2. (a) Map of the annual mean frequency of cloudy days from MODIS-based cloud
frequency (MODCF), where ‘‘cloudy days [%]’’ means the percentage of cloudy days
at a location, with 0 representing never cloudy and 1 meaning always cloudy. The
MODCF database contains missing data, as represented by the white patches in the top
figure. (b) A normalized version of the cloud climatology, with a range of [0, 1] and
excluding oceans.
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Fig. 3. (a) Map of the global climatological aerosol optical depth (AOD) by Yang–
Gueymard (for locations within ±60◦ in latitudes) and MERRA-2 (for locations beyond
±60◦ in latitudes). (b) Regridded and normalized AOD climatology map with a range
of [0, 1].

modeled reanalysis data for those regions. MERRA-2 is selected here
for that purpose, considering its relatively good accuracy globally [43].
Insofar as the desired AOD climatology is concerned, MERRA-2 has
been validated to possess decent accuracy [42]. In this work, MERRA-2
monthly mean AOD550 data (also known as the ‘‘M2TMNXAER 5.12.4’’
product), over 2016–2020, with a 0.5◦ × 0.625◦ spatial resolution, is
obtained from the Goddard Earth Sciences Data & Information Services
Center.4 It is stressed that, by design, the AOD550 data obtained
from the Yang–Gueymard climatology is more accurate than that from
MERRA-2, which is why this combination of two products is more
advantageous than solely using MERRA-2.

Yang–Gueymard and MERRA-2 are individually time-averaged into a
single, long-term climatology map because of their difference in tempo-
ral coverage. Since their spatial resolutions also differ, both long-term
climatology maps are again regridded onto a 0.5◦ × 0.5◦ latitude–
longitude grid, for consistency with the cloud and albedo climatology
maps. Fig. 3 (a) shows the raw AOD550 climatology used in this work;
the artifacts at ±60◦ are clearly visible due to the stitching of the two
databases over an area where they are both uncertain. The normalized
AOD climatology map is shown in Fig. 3 (b), in which pixels with darker
colors correspond to low AOD locations.

3.4. Albedo climatology

The surface albedo climatology dataset is based on the fifth-
generation ECMWF Reanalysis (ERA5) [44]—the latest-generation

4 https://disc.gsfc.nasa.gov/, one can search ‘‘MERRA-2 tavgM_2d_aer_Nx’’
from the website to find the exact product.
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global reanalysis produced by the European Centre of Medium-Range
Weather Forecasts (ECMWF). As compared to other albedo products
based on remote sensing, such as those derived from MODIS, ERA5’s
albedo has lower spatial resolution (0.25◦ × 0.25◦ in latitude and
longitude), and possible lower accuracy. Nevertheless, it inherits the
advantage of reanalysis products, in that the data is spatio-temporally
complete, which is a critical feature for the intended application here.

The data can be acquired from the ECMWF’s Climate Data Store,5
which is a centralized database containing various gridded products of
ECMWF. The product family containing the monthly albedo climatol-
ogy is named ‘‘ERA5 monthly averaged data on single levels from 1959
to present.’’ The Climate Data Store offers an online user interface, from
which the user can select the variable, location, time period, and file
format. In this work, the variable called ‘‘forecast albedo’’ is selected,
over the entire globe, covering a period of 2016–2020, to echo the
span of the ground-based data, in NetCDF format. Since the dataset
is spatio-temporally complete, the processing only requires regridding
(onto the standardized 0.5◦×0.5◦ grid adopted here) and normalization
to [0, 1]. This procedure is consistent with those followed for clouds and
aerosols. Fig. 4 shows the raw and processed albedo climatology used
in this work, and darker colors denote smaller albedo.

At this stage, all three climatology variables have been introduced,
regridded, normalized, and thus made ready for clustering. However,
it is noted that the cloud climatology is the annual average of 15 years
from 2001 to 2015, and the other two variables, namely aerosol and
albedo, are averaged over the years 2016 to 2020. This temporal in-
compatibility would certainly have an effect on the results of clustering,
and temporally aligned data should be preferred in general, i.e., using
a cloud climatology over 2016–2020. However, the rule of thumb in
selecting input data is to use better-quality data whenever they are
available, and it is on this account that MODCF should be preferred.
The same argument can be used to justify the choice of merging Yang–
Gueymard and MERRA-2 AOD, instead of using just MERRA-2 AOD.
Another drawback is the temporal coverage of data, because good
climatology should be derived from data spanning multiple decades.
That said, since the climatology variables are processed into a single
‘‘snapshot,’’ which is similar in concept to the Köppen–Geiger climate
classification map, the intra- or inter-annual variability only impacts
clustering very marginally.

4. Results and discussion

4.1. Clustering results

The data preprocessing procedure results in regridded and normal-
ized versions of the selected climatology variables, which is a 92, 422×3
matrix, upon which the clustering depends. However, instead of using
all these locations for clustering, the clustering is performed with just
those pixels that collocate with ground-based stations. There are two
compelling reasons for this choice. Firstly, if worldwide locations are
used, such a data dimension is not conducive to the 𝑘-means algorithm,
as it implies a 92, 422 × 92, 422 distance matrix, which is beyond the
memory limit of regular computers. Although other clustering methods
that can handle big data are available, there is a second reason pre-
venting the use of worldwide locations for clustering. As the number of
locations escalates, the optimal number of clusters is likely to become
more numerous. As such, some clusters may not contain a sufficient
number of stations or any station at all, and the fitting for separation
model coefficients for those clusters is not possible. For these reasons,
this work uses just the climatology variables at those pixels containing
ground-based stations.

More specifically, those gridded values of the three climatology
variables that collocate with the radiometric stations form a matrix

5 https://cds.climate.copernicus.eu/cdsapp#!/home

https://disc.gsfc.nasa.gov/
https://cds.climate.copernicus.eu/cdsapp#!/home
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Fig. 4. (a) Climatology map of the ERA5 albedo, which is an aggregate of 5 years
(2016–2020) of albedo, at 0.25◦×0.25◦ resolution. (b) Regridded and normalized albedo
climatology on a 0.5◦ × 0.5◦ grid, in the [0, 1] range.

of dimension 126 × 3, which serves as the input of the clustering
algorithm. Its output is a set of integers representing the cluster to
which every station belongs. One preliminary step, however, consists
in specifying the cluster number such that the 𝑘-means algorithm can
assign cluster centers according to that number. It is customary to
choose the cluster number beforehand, taking into account that the
optimal selection is often elicited from a mix of indexes provided by
NbClust as mentioned before. Clearly then, the problem here is one
of balance—choosing the ‘‘centroid’’ of them might be the most sensible
solution.

As an illustration, Fig. 5 depicts the magnitude variation of seven
indexes, when the number of clusters is increased from two to ten. It is
clear that the divergence among the indexes is the smallest when the
number of clusters is six, which would normally indicate the optimum
number of clusters. Upon further verification, however, it is found that
using six clusters actually leads to unbalanced clustering results: Some
clusters contain tens of stations, whereas the smallest cluster contains
just three stations. This can be problematic if out-of-sample prediction
is to be carried out with new data. Therefore, considering this empirical
pitfall, the number of clusters is decreased from six to five, which
results in the desired more uniform clusters.

Fig. 6 (a) shows the 𝑘-means clustering results, visualized in the
principal-component space. More specifically, the three-dimensional
input data points (i.e., cloud, aerosol, and surface albedo) are projected
onto the space spanned by the first two principal components. Fig. 6 (b)
shows the same samples in the original three-dimensional space. In the
left subfigure, Clusters 4 and 5 have a considerable amount of overlap,
but this does not mean bad clustering—from the right subfigure, the
two clusters appear to be well separated. The other three clusters
have fewer samples than Clusters 4 and 5, and the within-cluster
distances of the samples are also larger than those of Clusters 4 and 5,
8

Fig. 5. Variation trend of normalized cluster indexes in NbClust.

which suggests the uneven spatial distribution of cloud–aerosol–albedo
climatology.

As in the case with all machine-learning algorithms, the 𝑘-means
clustering also allows prediction for new data: Once the model is
fitted, one can obtain the cluster number of a new location by feeding
the values of the three climatology variables at that place. Since the
climatology variables are available globally, a new regime-classification
map based on the three variables can be developed. After going through
every point in the regridded lattice, a map depicting the worldwide
cluster number can be drawn. Fig. 7 shows the so-called ‘‘radiation
climate classification’’ (RCC) based on the three climatology variables.
To be consistent with how KGC is developed, the oceanic pixels in the
RCC map are omitted except for islands with significant land area.

To better understand the clustering result, one can compare the RCC
map to the ‘‘Blue Marble’’ from NASA,6 which provides an observation
on the land surface, oceans, sea ice, and clouds distribution of the
entire Earth from space. One can find in Fig. 7 that Cluster 2, in
light blue, covers most of the Middle East and North Africa countries,
which are characterized by relatively high surface albedo (desert), low
cloud cover frequency, and medium to high AOD due to frequent dust
episodes. Cluster 3, in green, occupies high-latitude regions, where the
surface albedo is particularly high because of the extensive snow and
ice coverage. It is also clear that the areas characterized by high AOD
and cloud cover frequency—Cluster 1, in orange—tend to be geograph-
ically adjacent to Cluster 2 around the Sahara and the Taklamakan
deserts. Lastly, in the mid-latitude areas, Clusters 4 (in yellow) and 5
(in dark blue) are often found adjacent to each other, where Cluster 5
is associated with large forests (e.g., the Amazon) and Cluster 4 with
arid areas next to these forests (e.g., most of Australia). It is noted
that clusters appear with irregular shapes in the middle of Asia, which
appears to result from the local geomorphic complexity and diversity.
Using Fig. 7, users are able to search for the corresponding RCC for any
location of interest, and thus perform separation modeling using Yang5
for worldwide locations.

4.2. Performance evaluation

Ground-based irradiance data from each of the 126 sites are ran-
domly split into two halves, as to be used for training and validation,
respectively. For each cluster, data points from all stations within
that cluster are lumped into overall training and validation sets. Since
the new Yang5 model follows the same function form as Yang4, the
least-squares fitting process is also inherited from its predecessor. The
regime-dependent coefficients of the Yang5 are tabulated in Table 1. For
comparison purposes, the coefficients of Yang4 are given in Table 2.

6 https://visibleearth.nasa.gov/images/57752

https://visibleearth.nasa.gov/images/57752
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Fig. 6. Clustering of 126 stations by 𝑘-means. The left panel shows a 2D view of the clustering result, where stations from different clusters are marked with different colors and
shapes. The right panel shows the 3D version of the clustering result.
Table 1
Model coefficients of the regime-switching Yang5.

Cluster 𝐶 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6
1 0.13105 −4.26740 7.68051 0.00540 0.01748 0.91590 0.52176 −1.68819
2 −0.01614 −3.33038 5.72307 0.01296 0.01230 −0.96483 0.94204 −1.68332
3 −0.27475 0.36085 0.39869 0.00479 0.00039 −10.20264 2.12475 −1.78455
4 −0.01095 −0.92129 3.65015 0.00767 0.00494 −3.76465 1.36482 −2.11867
5 0.04297 −1.64437 4.71808 0.01462 0.00745 −3.35223 1.25192 −2.36477
Fig. 7. Global radiation climate classification based on cloud, aerosol, and surface
albedo climatology.

One may notice that there are some differences in magnitudes and
signs of the model coefficients across regimes. Firstly, the magnitudes
of model coefficients reflect the relative importance of each predictor
as to predicting the diffuse fraction. As the predictor variables under
different regimes exhibit different characteristics or profiles, it is rea-
sonable for their relative importance vis-�̀�-vis separation modeling to
vary across regimes. Secondly, the occasional inconsistency in signs is
thought to be purely mathematical, in that, the nonlinear least squares
routine only minimizes the sum of squares but does not place any
constraints on the sign or bounds of the coefficients. Since the routine
converged for all five fitting exercises, the coefficients are guaranteed
optimal with respect to the fitting data. More importantly, because
the model is empirical in nature, making too many hypotheses, as
to trying to understand why the coefficients behave in certain ways
through physics, might not be meaningful. A more straightforward
means to check the validity of these coefficients is through performance
evaluation.

Yang5 needs to be evaluated against its peers. To ensure a fair
comparison, the validation procedure of Yang [18] is followed pre-
cisely. In particular, the procedure is three-fold: (1) computing the error
9

metrics, (2) model inter-comparison with linear ranking statistics, and
(3) model inter-comparison through the Diebold–Mariano (DM) test.
Given the large number of sites, tabulating all error metrics at each site
would be inefficient. Hence, only the lumped statistics (i.e., nRMSE and
nMBE), for all validation data points in each cluster, are displayed in
Tables 3 and 4 for 𝐵𝑛 and 𝐷ℎ, respectively. Interestingly, the overall
nMBE of Yang5-estimated 𝐵𝑛 in any cluster is below ±4%, which is
unprecedented. This bias reduction is of substantial importance to solar
resource assessment, which values bias more than accuracy. Moreover,
as compared to Yang4 and other benchmark models, it is noteworthy
that the nRMSEs of Yang5 for both 𝐵𝑛 and 𝐷ℎ are significantly lowered
in Clusters 1, 2, and 3, i.e., over regions with high cloudiness, high
aerosol load, and high surface albedo, respectively. This empirically
confirms that the proposed three-factor regime-dependent approach is
sound.

The linear ranking method is applied to calculate the mean rank of
the 𝑖th model, which is denoted as 𝑚𝑖:

𝑚𝑖 =
5!
∑

𝑗=1

𝑛𝑗𝜈𝑗 (𝑖)
𝑛

, (9)

where 𝜈𝑗 with 𝑗 = 1, 2,… , 5! represents all possible rankings of the five
models; 𝑛𝑗 is the frequency of occurrence of the ranking 𝑗; 𝑛 = ∑5!

𝑗=1 𝑛𝑗
is the number of samples; and 𝜈𝑗 (𝑖) denotes the score of model 𝑖 in
ranking 𝑗. In this work, a negatively oriented ranking convention is
used, which means that a better model receives a smaller 𝜈𝑗 (𝑖). Stated
differently, if model 𝑖 ranks the highest in ranking 𝑗, 𝜈𝑗 (𝑖) = 1; if it
ranks the lowest, then 𝜈𝑗 (𝑖) = 5. The ranking is based upon nRMSE, and
the smaller the nRMSE of a model is, the higher the ranking of that
model and the lower its 𝜈𝑗 are. Table 5 shows the ranking results of the
separation models for the 𝐷ℎ predictions, and Table 6 shows similar
results for the 𝐵𝑛 predictions. Each column in those tables corresponds
to the ranking at a particular site; for conciseness, only a few columns
(i.e., sites) are printed here with the rest omitted. The mean rank is
calculated through Eq. (9). Among these models, Starke2 performs the
worst, followed by Engerer2 and Starke3. This is somewhat expected,
as both Starke2 and Engerer2 were fitted using local data, which can
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Table 2
Model coefficients of Yang4.
𝐶 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6
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Table 3
Cluster-wise normalized RMSE and MBE, both in percent, of five separation models.
The column ‘‘mean’’ shows the mean 𝐵𝑛 in W/m2 for all data points in a cluster.

Cluster Mean Engerer2 Starke2 Starke3 Yang4 Yang5

nRMSE [%]

1 379.7 27.2 29.8 23.2 28.3 20.3
2 618.4 18.3 22.9 19.7 19.7 16.4
3 596.4 26.7 32.5 26.6 26.4 23.0
4 634.2 15.4 15.0 14.4 13.7 13.1
5 477.0 22.5 22.6 21.2 20.3 19.5

Overall 533.3 20.6 21.3 19.4 19.1 17.5

nMBE [%]

1 379.7 11.2 17.1 2.2 12.0 3.5
2 618.4 4.9 14.9 9.5 7.6 2.2
3 596.4 6.6 18.2 5.3 8.4 −3.4
4 634.2 −3.4 5.1 0.4 −1.7 0.1
5 477.0 1.0 9.3 −0.7 1.1 1.4

Overall 533.3 1.0 9.5 0.9 1.9 1.1

Table 4
Same as Table 3, but for 𝐷ℎ.

Cluster Mean Engerer2 Starke2 Starke3 Yang4 Yang5

nRMSE [%]

1 227.8 30.7 33.2 24.9 32.2 22.5
2 171.9 40.4 49.1 41.6 42.9 36.2
3 125.6 49.8 60.6 52.9 49.8 46.8
4 147.2 42.2 40.8 38.2 36.3 35.7
5 179.5 36.6 36.0 33.9 32.0 31.2

Overall 170.7 38.7 39.3 35.9 34.9 32.9

nMBE [%]

1 227.8 −10.9 −17.1 −1.1 −13.2 −1.0
2 171.9 −8.6 −29.7 −18.9 −16.2 −1.0
3 125.6 −8.8 −32.4 −6.6 −13.8 10.9
4 147.2 9.5 −12.5 −0.7 3.9 1.1
5 179.5 0.6 −12.6 3.8 −0.6 0.6

Overall 170.7 1.2 −15.2 −0.2 −2.0 0.9

Table 5
Ranking results of five separation models, based on the root mean square error of 𝐷ℎ
stimates, at 126 sites. For each site, the best model is ranked ‘‘1,’’ and the worst model
s ranked ‘‘5.’’ The middle columns for additional sites are omitted. The last column
hows the mean rank of each model. A smaller rank indicates better performance.
Model Station

1 2 3 ⋯ 126 Mean rank

Engerer2 4 2 4 ⋯ 5 4.16
Starke2 5 5 5 ⋯ 4 4.17
Starke3 3 3 3 ⋯ 1 2.58
Yang4 1 4 2 ⋯ 3 2.47
Yang5 2 1 1 ⋯ 2 1.62

impede their performance elsewhere. In contrast, Yang5 obtains the
highest rank, beating its predecessor, Yang4, by a significant margin.

To give a visual representation of the predictive performance of the
models, Fig. 8 shows the classic 𝑘–𝑘𝑡 plot at one of the stations, namely,
the KWA station (−29.871◦S, 30.977◦E). Whereas the measurements
(contained in the validation dataset at that site) are represented by the
gray background, the viridis-colored scatter represents the predictions
made by various models. A good separation model should cover the
gray background as extensively as possible. Based on the relative 𝑘–
𝑘𝑡 coverage, it can be concluded that Yang5 and Yang4 are able to
10

‘‘explain’’ more cases, followed by the two Starke models, and finally
Table 6
Same as Table 5, but based on the RMSE of 𝐵𝑛 estimates.

Model Station

1 2 3 ⋯ 126 Mean rank

Engerer2 4 2 4 ⋯ 5 3.98
Starke2 5 5 5 ⋯ 4 4.13
Starke3 3 4 3 ⋯ 2 2.90
Yang4 1 3 2 ⋯ 3 2.61
Yang5 2 1 1 ⋯ 1 1.37

Engerer2. Comparing the two Yang models more specifically, it can be
observed that: (1) Yang5 extends more to the left as compared to Yang4,
indicating the former is able to predict a smaller clearness index; and
(2) the overall point cloud and the high-count-cloud is more dispersed
for Yang5, which is a result of the regime-switching.

To better visualize the disparity between models, the DM test [45]—
a statistical test for comparing the predictive accuracy of two models—
is appropriate, as also demonstrated in previous works in which ra-
diation models were compared [46–48]. The details of carrying out
DM tests were thoroughly discussed by Yang [18], and thus are not
reiterated. Figs. 9 (a) and (b) show the results in terms of 𝐵𝑛 and 𝐷ℎ
predictions, respectively. The number in each cell is the number of
instances the DM test statistic falls in the lower or upper 2.5% tail of a
standard normal distribution. Stated differently, it provides the number
of ‘‘Model A is better than Model B’’ instances. For example, in the
lower-right corner, Yang5 performs significantly better than Engerer2
at 122 out of 126 stations in terms of 𝐵𝑛. Since Yang5 has the largest
number of ‘‘wins,’’ it can again be considered the best model overall
according to that criterion.

Given the ranking statistics and DM tests, it is still of interest to
examine the distribution of error metrics, which is more intuitive.
Tukey’s boxplots of two error metrics, five clusters, and two variables
(𝐵𝑛 and 𝐷ℎ) are displayed in Fig. 10. One can readily see that the

edian errors of Yang5, which are marked by the middle bar in each
ox, are often the lowest in terms of nRMSE (or closest to zero in
erms of nMBE). Moreover, for Clusters 1 and 2, Yang5 presents a
arge advantage in predicting both 𝐵𝑛 and 𝐷ℎ, which is consistent
ith the previous cluster distribution results. Therefore, this visual
ssessment confirms the conclusions from the ranking statistics and
M tests earlier, suggesting with high confidence that Yang5 performs
etter than Yang4, which completes the validation part of the work.

.3. Methodological limitation

Yang5 performs best among all selected benchmarks, but, as with
ny model, there is potential for further improvement. When perform-
ng regime classification, this work uses a simple clustering method
ithout weights, so the importance of the three climatology variables

s assumed to be uniform, which might not be the optimal solution. On
op of that, other means of enhancing the clustering, such as using an
lgorithm that can handle bigger data volume or including additional
limatology variables,could be considered. That said, the RCC map
epicted in Fig. 7 clearly resembles the geographical features of the

‘Blue Marble’’ of NASA. As such, the current clustering approach is
dmissible, as also evidenced by the superior performance of Yang5
han all other separation models to date.

Moving beyond the clustering technique, which is only of second-
rder significance to this work, the new model follows the form and
odeling philosophy of Engerer2, which is mostly data-driven and
arginally physical (i.e., by factoring the effects of cloud-enhancement



Renewable and Sustainable Energy Reviews 189 (2024) 113992D. Yang et al.
Fig. 8. Diffuse fraction measurements (gray background) at the KWA station (−29.871◦S, 30.977◦E), overlaid with the prediction results (viridis colors) of various separation models.
Fig. 9. Pairwise Diebold–Mariano tests for comparing the predictive accuracy of various separation models for 𝐵𝑛 (left) and 𝐷ℎ (right).
events). It should be noted that separation models are often used in
concert with satellite-derived GHI. However, deriving diffuse and beam
radiation components from remote-sensing data can also be performed
in a purely physical fashion through radiative transfer. How the em-
pirical separation models compare to the physical derivation is largely
unclear at the moment, which prompts future research in that direction.

When fitting the coefficients of Yang5, the sample sizes vary among
stations because of the differing quality of the original data from the
IEA PVPS database. After quality control, some sites have substantially
more valid data points than others. Consequently, the sample size may
exert an effect on the fitting, in that, stations with more samples con-
tribute more towards the final coefficients. As a remedy, one may subset
the same number of samples from each station, thus guaranteeing the
equal contribution of each station, but that implies a smaller fitting
dataset, which may or may not be beneficial in the end. Weighting
serves as another alternative, but weighted nonlinear least squares is
a method that goes beyond the scope of this work.

Finally, the model could be made even more complex by considering
the seasonal variations in cloud, aerosol, and surface albedo, which are
known to be large over most regions. This extension, however, would
multiply the number of coefficient sets in Table 1, which might end up
being overkill if the resulting gain in accuracy happens to be small.

5. Conclusion

Separation models are empirical functions that are needed in many
applications to derive the diffuse fraction from the clearness index
and other auxiliary variables, whenever directly measuring the direct
or diffuse irradiance component is infeasible. Over the years, many
such models were created with various parameters and variables. The
11
Yang4 model was found to be of quasi-universal applicability and the
most accurate model until this work. As an upgraded version of that
predecessor, the proposed Yang5 model introduces regime-dependent
coefficients through clustering the climatology maps of three variables,
while preserving the temporal-resolution cascade characteristic from
Yang4. Through error calculation, statistical linear-ranking analysis,
Diebold–Mariano tests for comparing predictive accuracy, as well as
visual inspection, Yang5 is found to outperform four other selected
benchmarks on extensive 1-min irradiance data, which marks its supe-
riority and general applicability. In particular, for the 126 radiometric
stations used in this work, the overall nRMSEs of Yang5 for BNI and
DHI are 17.5% and 32.9%, which are significantly lower than those
of Yang4 and three other high-performance separation models of the
recent literature. With the new model, BNI can be expected to be
estimated with a small bias of less than 4% at any site, which is
unprecedented. Compared to all previous models, the three radiation
climate clusters with high cloudiness, high aerosol load, or high surface
albedo are those for which the overall nRMSE is lowered the most, thus
confirming the validity of the regime-dependent approach.

The development of Yang5 integrates several innovative separation
modeling approaches in the literature. First, it resumes the logistic
function shape, which gave rise to several high-performance models.
Next, it considers, as per the Engerer2 model, the cloud enhancement
as an important predictor, which improves the prediction at instances
where 𝑘𝑡 is high. Last but not least, Yang5 improves Yang4 by intro-
ducing three climatology quantities that have a significant impact on
solar radiation, which are then subjected to dimensionality reduction
through cluster analysis. Since Yang5 has a dominating performance
over Yang4, which was deemed to be the quasi-universal model when it
was first proposed, Yang5 should be the new quasi-universal model with
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Fig. 10. nRMSE [%] and nMBE [%] of 𝐵𝑛 and 𝐷ℎ estimates from five selected separation models, namely, Engerer2, Starke2, Starke3, Yang4, and Yang5. Tukey’s boxplots are
used for visualization. Dots beyond the ends of whiskers indicate outliers. The evaluation is grouped by clustering based on cloud, aerosol, and surface albedo climatology. The
height of the boxes is proportional to the number of stations.
the overall best performance in the world. That said, even though Yang5
can efficiently predict diffuse fractions, empirical models have limited
potential for improvement in comparison to physical models, which
are thought to have a priori advantage. Besides physical modeling,
another conspicuous alternative is to leverage machine learning, which
has found success in many domains including energy meteorology.
Finally, it should be reiterated that separation modeling has profound
implications on the utilization of solar energy, as it is a part of the
model chain, which converts irradiance to photovoltaic power. As such,
continuous improvements in separation modeling are essential.
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are saved in RCC.csv to facilitate estimation for unseen sites. MBEs
nd RMSEs of the five separation models at 126 individual stations are
isted in Bn_error.csv and Dh_error.csv, respectively.

Data: The raw data files as obtained from IEA members are not pro-
ided here for proprietary reasons. The raw climatology data, including
loud, aerosol, and surface albedo climatology, are also not provided
ue to their sizes. However, they can be downloaded from three sources
s mentioned in Section 3. The cloud data is in GeoTiff format, with
erosol and albedo data provided in NetCDF format.

Code: Several R scripts are provided for the reader’s information.
unning these scripts is not possible, because that requires the original
ata files, which are either proprietary or too large to be uploaded to
ithub. However, readers who are interested in running the code can
ontact the corresponding author for more information.

• ArrangeAOD.R, ArrangeCloud.R, and ArrangeAlbedo.R
re used to rearrange the raw climatology data and draw global maps
f three variables.
• dividing.R melts the three climatology variables and gets the

orresponding climatology value of 126 stations.
• fitting.R first performs clustering with the climatology vari-

bles at station locations, and then fits and obtains the regime-
witching coefficients of Yang5.

• validation.R computes error metrics of the five selected mod-
ls, visualizes the result of DM tests, and makes the 𝑘–𝑘𝑡 plot along with
he bar plot.

• Fig6_clusterPlot3D.R depicts the 3D version of the cluster-
ng result of 126 stations.

• Fig7_clusterMap.R draws the global RCC map based on the
lustering result.
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