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A B S T R A C T

Numerical weather prediction (NWP) has hitherto been the default tool for providing day-ahead forecasting
services to the solar energy industry. Rapid advancements in solar forecasting using NWP call for more
appropriate forecast verification procedures. Current solar forecast verification is almost always carried out
through ground-based radiometric data collected at point locations. Consequently, spatial features embedded
in the gridded NWP forecasts cannot be verified. This study presents the spatial verification of solar
irradiance forecasts using the neighborhood method, with the main goal of emphasizing the importance of
such verification procedures. By applying spatial smoothing one establishes a way to directly compare the
observed and forecast fields, and concurrently, mitigate verification errors that may arise from small-scale
spatial displacements. Within this framework, two variants of the neighborhood-based verification, namely,
the fraction-field method and the upscaling method, are examined with respect to two reanalysis products,
namely, ERA5 and MERRA-2. The results suggest that, in comparison to the upscaling method, the fraction-field
method can better quantify forecast performance by providing fractions skill scores. On top of the traditional
neighborhood approach, which involves the subjective selection of threshold for dichotomization, an automatic
threshold segmentation method based on the three-component skew-normal mixture model is proposed to
resolve the issue, which can also lead to substantial time savings in data processing. Given the spatio-temporal
attributes and benefits of visualization, spatial verification is anticipated to serve as a complementary practice
to the current mainstream point-location forecast verification.
1. Introduction

Solar power generation, as a clean and renewable energy tech-
nology, holds great potential in reducing greenhouse gas emissions
and meeting energy demands [1,2]. Nevertheless, the ability to man-
age the variable solar power generation, so as to better align the
solar generation profile with the load profile, largely depends on the
forecast quality of solar irradiance [3,4]. In practical applications,
accurate solar irradiance forecasting plays a crucial role in enabling
decision-makers to efficiently schedule power generation, strategically
set flexible resources, and optimize energy supply [5,6]. This, in turn,
opens up the possibility of large-scale and high-penetration integration
of photovoltaic (PV) power into the grid [7,8].

Solar irradiance forecasting refers to the process of predicting the
future solar irradiance at a specific location or over an area [9]. The
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amount of radiation reaching the surface is primarily influenced by
clouds, aerosols, surface albedo, and water vapor, through complex
radiative transfer processes. All these influencing factors vary in both
space and time, thus making solar irradiance forecasting a challenging
task. Given the significance of solar forecasting for the utilization of
solar energy, the verification and assessment of forecasts are of partic-
ular importance. In recent years, research on forecast verification has
emerged as a central focus in the field of solar energy meteorology [2,
10]. The verification process typically involves comparing forecasts to
observations—the correspondence between forecasts and observations
gauges the forecast quality, which is one aspect of the goodness of
forecasts, alongside consistency and value [11]. In most cases, observa-
tions come from ground-based radiometric stations, which provide the
most reliable and accurate means of acquiring information pertaining to
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Nomenclature

Abbreviations

CAMS The ECMWF’s Copernicus Atmosphere Mon-
itoring Service

CAMS-Rad CAMS radiation service
ECMWF European Centre for Medium-Range

Weather Forecasts
ERA5 Fifth-generation ECMWF reanalysis
ETS Equitable threat score
FBS Fractions Brier score
FSS Fractions skill score
MBE Mean bias error
MERRA-2 Modern-Era Retrospective Analysis for Re-

search and Applications, version 2
NAM North America Mesoscale
NSRDB National Solar Radiation Data Base
NWP Numerical weather prediction
POD Probability of detection
PV Photovoltaic
RMSE Root mean square error
SURFRAD Surface Radiation Budget Network

Variables

#𝐻random The random hits
𝜂 Threshold
𝜅 Clear-sky index
𝜅𝑓 (𝑖, 𝑗) The clear-sky index for forecast fields at grid

box position (𝑖, 𝑗)
𝜅𝑥(𝑖, 𝑗) The clear-sky index for observed fields at

grid box position (𝑖, 𝑗)
⟨𝜅𝑓 ⟩𝑚(𝑖, 𝑗) The clear-sky index for forecast fields after

smoothing at grid box position (𝑖, 𝑗)
⟨𝜅𝑥⟩𝑚(𝑖, 𝑗) The clear-sky index for observed fields after

smoothing at grid box position (𝑖, 𝑗)
⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) The forecast fraction at grid box position

(𝑖, 𝑗)
⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) The observed fraction at grid box position

(𝑖, 𝑗)
′

𝑠 The set containing all neighborhoods
𝑠 The total verification domain
FSSuniform Useful skill score
|𝑠| The total number of pixels in the verifica-

tion domain
𝑓0 The basic rate—the proportion of the area

in the observation or forecast fields where
the clear-sky indexes exceed a specified
threshold

𝑔(𝑧;𝛩) A common form of finite mixture density
𝐼𝑓 (𝑖, 𝑗) The forecast binary event at grid box

position (𝑖, 𝑗)
𝐼↑𝑓 (𝑖, 𝑗) The forecast binary event at grid box

position (𝑖, 𝑗) under the upscaling method
𝐼𝑥(𝑖, 𝑗) The observed binary event at grid box

position (𝑖, 𝑗)
𝐼↑𝑥 (𝑖, 𝑗) The observed binary event at grid box

position (𝑖, 𝑗) under the upscaling method
2

𝐾𝑚 The convolution kernel of the 𝑚 × 𝑚 mean
filter

𝑥, 𝑓 Generic variable denoting observations and
forecasts

Functions

𝛷 The cumulative distribution function of the
standard normal distribution

𝑓 (𝑧;𝜽) The density of the skew-normal distribution
𝑓 (𝑧;𝜽𝑡) The probability density function (PDF) of

the 𝑡th component in the mixture

Parameters

#CR The correct rejections, where 𝐼↑𝑥 (𝑖, 𝑗) = 0
and 𝐼↑𝑓 (𝑖, 𝑗) = 0

#FA The false alarms, where 𝐼↑𝑥 (𝑖, 𝑗) = 0 and
𝐼↑𝑓 (𝑖, 𝑗) = 1

#H The hits, where 𝐼↑𝑥 (𝑖, 𝑗) = 1 and 𝐼↑𝑓 (𝑖, 𝑗) = 1
#M The misses, where 𝐼↑𝑥 (𝑖, 𝑗) = 1 and 𝐼↑𝑓 (𝑖, 𝑗) =

0
𝜽𝑡 The parameter 𝜽 of 𝑡th component
𝜽⊤𝑡 The transpose of 𝜽𝒕
𝜂1 Threshold intensity—the 𝜅 value corre-

sponding to the intersection of the curves
for overcast conditions and other conditions

𝜂2 Threshold intensity—the 𝜅 value corre-
sponding to the intersection of the curves
for other conditions and clear-sky condi-
tions

𝜆 Skewness parameter
𝜇 Mean of PDF
𝜙 The PDF of a normal distribution with mean

𝜇 and variance 𝜎2

𝜎2 Variance of PDF
𝛩 The parameter vector of this mixture distri-

bution, where 𝛩 = (𝑝1,… , 𝑝𝑛,𝜽⊤1 ,… ,𝜽⊤𝑛 )
⊤

𝑛 The number of components in the finite
mixture model

𝑁𝑥 The number of columns in the entire
verification domain

𝑁𝑦 The number of rows in the entire verifica-
tion domain

𝑝𝑡 The mixture weight of the 𝑡th component in
the mixture

𝑧 Random variable

Indexes

𝑖, 𝑗 Index for a spatial grid box position on
forecast or observation fields, 𝑖 = 1,… , 𝑁𝑥,
𝑗 = 1,… , 𝑁𝑦

𝑘 Index for the row of neighborhood window
with a size of 𝑚 × 𝑚, 𝑘 = 1,… , 𝑚

𝑙 Index for the column of neighborhood
window with a size𝑚 × 𝑚, 𝑙 = 1,… , 𝑚

𝑚 Neighborhood scales, 𝑚 = 1, 3, 5,…
𝑡 Index for component of the three-

components skew-normal mixtures model,
𝑡 = 1,… , 𝑛



Renewable and Sustainable Energy Reviews 202 (2024) 114655X. Zhang et al.

o
o
(
A

surface irradiance. In other situations where ground-based measure-
ments are not available, one may also gauge forecasts against the
irradiance retrieved from satellite images; this point is to be revisited
shortly after. Since forecast quality depends upon time scale, season,
location, and sky conditions, verification is often conducted separately
for each condition [12,13].

From a statistical viewpoint, surface shortwave downward solar
radiation (better known as the global horizontal irradiance in solar
engineering) is a spatio-temporal process that is continuous in both
space and time. When such a process is sampled, by either ground-
based radiometry or remote sensing, it is discretized. Consequently,
virtually all irradiance datasets are in the form of time series (point-
location measurements), or time series of lattice processes (gridded
products). In the case of the former, the absence of spatial infor-
mation can potentially result in a misalignment of the forecast and
observation time series, consequently yielding misleading forecast ver-
ification results. This represents a fundamental challenge encountered
in traditional point-location forecast verification. As such, the most
desirable verification procedure necessitates considering both temporal
and spatial information, and the corresponding verification methods
and evaluation metrics need to be established.

1.1. Best solar forecasts are generated spatio-temporally

Echoing the need for spatial forecast verification is the fact that
the best kind of solar forecast is more often than not generated with
physics-based methods, which all have a spatio-temporal appeal. On
this point, one may question the validity of forecasting irradiance solely
based on historical point-location measurements. The answer to this
question is twofold. First, the accuracy of forecasts made using data
collected at a point location is limited, because such forecasting systems
do not consider any spatio-temporal information. The generation, ad-
vection, diffusion, and extinction of clouds cannot be totally captured,
at least not very effectively, by point-location measurements. Hence,
in most, if not all, scenarios, spatio-temporal forecasting methods can
easily outperform point-location forecasting methods [14,15]. Second,
it has been repeatedly emphasized that forecasting in physical sci-
ences has to differentiate itself from other forecasting domains, such
as econometrics or financial forecasting, where statistical forecasting
methods dominate [16]. More specifically, a solar forecaster has to
know what makes solar forecasting special—the physics and chemistry
of the earth’s atmosphere.

It has long been known that the images from sky camera [17], satel-
lite imagery, and numerical weather prediction (NWP) output [18,19]
are the indispensable exogenous data used in modern solar forecasting,
for intra-hour, intra-day, and day-ahead horizons, respectively [20].
Clearly, all of them are spatio-temporal in nature. Stated differently,
they can be used to produce forecasts on a spatial lattice, i.e., the fore-
casts are gridded. Whereas the physics-based solar forecasting methods
are rapidly gaining attention from the energy meteorology community,
the methods to verify such gridded forecasts, as mentioned earlier, seem
to be underdeveloped.

1.2. Why do we need spatial forecast verification?

Forecast verification compares a set of forecasts, 𝑓 , to a set of
bservations, 𝑥, and thus provides some ideas about the goodness
f forecasts. Typically, measures of quality, such as mean bias error
MBE), root mean square error (RMSE), or RMSE skill score, are used.
lternatively, one can verify the joint distribution of 𝑓 and 𝑥, using

graphical tools and summary statistics [21]. Since the ground-based
observations are made at point locations, only the forecasts in the
corresponding grid cells are verified. Such traditional verification is not
useful on at least two aspects: (1) the performance of the gridded fore-
casts is unknown at those unobserved locations, and (2) the ‘‘near-miss’’
in the forecasts caused by small-scale variability is not represented.
3

It is well known that the performance of any solar forecasting model
depends on climatic and weather conditions [22]. Although one may
invoke Tobler’s first law of geography—near things are more related
than distant things—and argue that the performance of a model over a
cluster of grid boxes is similar, this needs not to be the general case. For
instance, the Big Island of Hawaii is famous for its ecological diversity;
it has eight of the world’s thirteen climate sub-zones according to the
Köppen–Geiger climate classification [23]. Moreover, the area of the
Big Island is 10,432 km2, which is approximately the area covered by
100 grid boxes with a 10 km by 10 km resolution. This means that the
accuracies of the gridded forecasts in adjacent pixels may in fact be
quite different.

Furthermore, a near-miss in a weather forecasting context means
that the forecast event occurs around the neighborhood of the observed
event. For example, one can say the forecast is a near-miss, if the fore-
cast cloud field is shifted two pixels to the left, and it then overlaps with
the observed cloud field nicely. Such near-misses are mostly due to the
small-scale variability in the spatio-temporal processes, e.g., parallax
effects from sun–cloud shadow projections. To that end, having the
gridded irradiance forecasts verified spatially is of great interest. If a
forecast irradiance field is spatially similar to the observed field, some
measures are needed to quantify such similarities. From a mathemat-
ical perspective, spatial forecast verification allows for the detection
and quantification of deviations, rotations, deformations, and other
phenomena within forecast fields. These aspects cannot be captured
through point-location verification. However, to the best of the authors’
knowledge, there is no published work on the spatial verification of
solar forecasts [2]. One must therefore turn to the field of meteorology,
which has a relatively rich literature on spatial verification.

1.3. A review of spatial forecast verification methods

Spatial forecast verification is often exemplified through precipi-
tation forecasts, as the dichotomous variable corresponding to ‘‘rain’’
or ‘‘no rain’’ offers the most fundamental case that can facilitate the
study of meteorological fields. To address the displacement errors in
the forecast precipitation field, which cannot be examined by tradi-
tional point-location verification, Gilleland et al. [24,25] reviewed and
analyzed four classes of spatial forecast verification methods, namely,
the neighborhood methods, scale-separation methods, feature-based
methods, and field deformation methods, which give a fairly complete
typology of spatial forecast verification. Among the four classes of
methods, the first two essentially perform a filtering procedure to the
meteorological fields, such that the small, high-frequency noise from
the forecast and observed fields can be removed, exposing the latent
spatial processes for verification. As for the feature-based and field
deformation methods, they seek to capture the displacement of the
forecast field from the observed one, so as to gauge the quality of the
forecast.

The neighborhood approach is also known as the fuzzy approach,
which has been thoroughly reviewed by Ebert [26]. Its general idea is
to make the forecast and observed fields less sharply defined, and the
approximate agreement between the two fields is what the verification
method seeks to assess. Neighborhood methods differ from one another
mainly in terms of the decision model, the quantity being compared,
and the error metric. The term ‘‘decision model’’ simply defines what
is a good forecast. For instance, Yates et al. [27] and Zepeda-Arce
et al. [28] considered a variant of the neighborhood approach, known
as upscaling, that has a decision model of ‘‘good forecasts resem-
bles the observations when upscaled to coarser scales’’. In another
example, Roberts and Lean [29] used the fractions skill score (FSS),
which is associated with a decision model of ‘‘good forecast has a
similar frequency of forecast events as the observation’’. As for quantity
being compared, the neighborhood methods can work with the original
fields, averaged fields, or fraction fields, which gives rise to some

flexibility in data preprocessing (e.g., smoothing after dichotomization
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or dichotomization after smoothing). Various error metrics may be
employed to eventually gauge the goodness of forecasts. Depending on
whether the quantity being compared is binary, multi-categorical, or
continuous, metrics such as the Brier score, FSS, or RMSE may be opted
for.

The underlying principle of the scale-separation methods is simple:
The field is decomposed into several fields, each representing the
variation on a particular spatial scale. For example, in the case of pre-
cipitation, physical features on a larger spatial scale may be associated
with frontal systems, whereas those on a smaller spatial scale may be
associated with convective showers. Scale separation is performed with
bandpass filters such as the Fourier or wavelet decomposition [30].
This philosophy of examining a spatial field in its spectral domain is
commonly employed in spatial statistics, and the relevant techniques
are well elaborated in the book by Cressie and Wikle [31]. Insofar
as the spectral representation of a field is concerned, it allows one to
discern phase and amplitude errors, which are typically not possible
with traditional statistical measures [32]. Moreover, since the latent
scales of a field are singled out, it is now possible to scrutinize these
scales independently and observe the scale at which the no-skill-to-skill
transition occurs [33]. This is well-suited if the forecast is purposed to
a specific scale. Scale-separation methods use the traditional statistical
measures at each scale in terms of the decision model.

Generally speaking, feature-based methods seek to capture specific
features within the observed and forecast fields, discover the best
feature matches across both fields, and then compare these matched
features according to various criteria. Feature-based methods are also
known as object-oriented methods, for the goodness of a forecast field
is evaluated in terms of the objects contained in it. On this point,
object identification is needed. Ebert and McBride [34] considered
the so-called contiguous rain areas, which are regions enclosed by a
user-specified isopleth of precipitation. With the identified features in
both the observed and forecast fields, their horizontal displacement
error may be computed by moving the forecast feature toward the
observed feature until their alignment is maximized. One drawback of
the feature-based methods is that they do not facilitate any analysis
depending on the spatial scale of the quantity of interest [24].

Last but not least, field-deformation methods spatially morph the
forecast field to resemble as closely as possible the observed field. The
‘‘strength’’ or ‘‘energy’’ required for the deformation therefore gauges
the similarity between the two fields. This class of methods was first
introduced by Hoffman et al. [35] in the mid-1990s, by which time
the various tools for mathematical morphology were already devel-
oped [e.g., 36]. Given any two images, their warping relationship can
be described through a set of two thin-plate splines, and the bending
energy can be calculated with an elegant algebra. This philosophy
of quantifying the difference between two images brings out another
major tool for field-deformation methods, that is, optical flow, which is
a technique used to describe the motion of a field or an object. Optical
flow can be categorized into dense and sparse optical flow, depending
on whether the motion vector is computed at every single pixel within
the frame. Since optical flow now is a well-known method in computer
vision, ample references, and software packages can be found that can
facilitate forecast verification through field deformation.

In summary, spatial forecast verification aims to assess four objec-
tives: (1) scales at which a forecast has the skill, (2) location precision,
(3) the intensity of the field, and (4) the structure of the field. The first
objective is easy to comprehend, whereas the location precision refers
to whether the event-occurring location can be sufficiently forecast,
which is more relevant to discrete weather variables. Besides, the
intensity of the field is more relevant to continuous random variables.
As for the structure of the field, it is synonymous with spatial features
or objects, which are again more suitable for assessing the forecasts of
the rain areas. Table 1 gives a summary of the pros and cons of the four
classes of spatial verification methods, in terms of the four objectives.
4

Table 1
A comparison of four classes of spatial verification methods [24].

Class Scale Location Intensity Structure

Neighborhood ✓ ✗ ✓ ✗

Scale-separation ✓ ✗ ✓ ✗

Feature-based ✗ ✓ ✓ ✓

Deformation ✗ ✓ ✓ ✗

1.4. How good are the latest satellite-derived irradiance products?

To perform spatial verification, gridded observations are needed.
Whereas forecasts of some meteorological variables can be gauged with
high-resolution gridded reference datasets, for example, from mosaics
of radar rainfall estimates, such an instrument that collects ground-
based gridded irradiance is nonexistent (perhaps the sky-camera-based
[37] radiometry technique proposed by Kurtz and Kleissl [38] has
some potential, but at the moment, the accuracy of such measurements
are still far from being satisfactory). In this regard, remote-sensed
irradiance is naturally the next-best option, and most likely the only
option [39].

The solar energy meteorology community is constantly debating
whether or not the latest satellite-derived irradiance products are accu-
rate enough. One school, led by Richard Perez, believes that satellite-
derived irradiance has evolved to a stage where site adaptation is
no longer required [40]. The remaining ones are more conservative
and still view satellite-derived irradiance as a suboptimal source of
irradiance data [41]. It is believed that all of these arguments are
meaningless if the context is missing from the discussion. That is, one
must reference an application—how the satellite-derived data is to be
used—before interpreting the quantified accuracy.

Recently, Yang and Perez [42] put forward several case studies to
answer the question ‘‘Can we gauge forecasts using satellite-derived
solar irradiance?’’ Both the highest-accuracy ground-based measure-
ments from the Surface Radiation Budget Network (SURFRAD) and the
satellite-derived irradiance from the National Solar Radiation Data Base
(NSRDB) were used to compute the accuracy of forecasts made by the
North America Mesoscale Forecast System (NAM), at seven locations
in the contiguous United States. It was found that the RMSEs of the
NAM forecasts gauged using SURFRAD and NSRDB are almost iden-
tical. Furthermore, when the NAM forecasts are bias-corrected using
simple polynomial regression, satellite-based irradiance is clearly able
to detect the improvement in RMSE from the raw NAM forecasts [43].
Following that work, Yang and Boland [44] presented studies that com-
pared the effectiveness of using satellite-derived irradiance and ground-
based irradiance in two other solar energy applications, namely, solar
radiation separation modeling [44] and model output statistics for
NWP forecasts [45]. In the former, it was shown that by involving
satellite-derived irradiance, the RMSE of the best separation model,
the Engerer2 model, can be reduced substantially (25% reduction on
average). In the latter, research indicates that the satellite-derived
irradiance is almost as effective as the ground-based measurements
in terms of its NWP post-processing capability (in most cases, the
difference in their percentage RMSEs is within 1%). The conclusions
of these previous works lay down a solid foundation for the cur-
rent discussion—if the uncertainty in the satellite-derived irradiance is
much smaller than that in the gridded forecasts, it can be justified to use
satellite-derived irradiance to perform spatial verification [45]. Yagli
et al. [46] utilized an error decomposition framework to assess ground-
based measurement data and satellite data from 15 research-oriented
monitoring stations in Europe, South America, and Africa. They found
that forecasts generated using bias-corrected satellite data exhibited
the same level of quality as forecasts generated using ground-based
measurement data. Jiménez et al. [47] similarly demonstrated that
satellite-derived solar irradiance can serve as a viable substitute for
high-quality ground-based measurement data.
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In regard to the timeliness and availability of satellite data as to
serving the task of forecast verification, which some readers may raise
concerns about, many latest satellite-derived irradiance databases, such
as the Japan Aerospace Exploration Agency’s Himawari-8 product [48,
49], are near real-time, and that is likely to become a standard in
the near future. More importantly, it should be noted that forecast
verification is mainly concerned with the long-term performance of a
model (in solar forecasting, a year of data is common), therefore, the
delay in the satellite-derived irradiance data is not of primary concern.

1.5. The novelty and outline of this work

Since this is the first work on spatial verification of solar irra-
diance forecasts while considering factors such as cloud deformation
and drift, the neighborhood approach [50] is opted without loss of
generality. In short, the neighborhood verification approach is used to
evaluate the resemblance between forecasts and observations within
a spatio-temporal neighborhood window. This is achieved by gradu-
ally enlarging the neighborhood window and applying a smoothing
process to both the observational and forecast data. The specific im-
plementation steps for spatial forecast verification are as follows. First,
the observed and forecast images are converted into binary images
based on a predefined threshold—this step is known as dichotomization.
Subsequently, the binary images are smoothed using neighborhood
windows of various spatial scales, traversing from the top-left corner
and moving systematically to the right-bottom corner—this step is
known as smoothing. Finally, error measurement statistics are computed
for the smoothed data. Within the realm of probabilistic forecasting
of continuous random variables, the introduction of error metrics for
spatial prediction verification, such as the FSS, is utilized to compare
forecast and observed score fields within spatial neighborhoods. A
higher FSS value signifies a greater similarity between observations and
forecasts, indicating higher forecast quality. If the order of the first two
steps in the preceding workflow is reversed, it results in another variant
of the neighborhood verification, with a notable difference in terms of
the field under verification, which is binary in this case. Utilizing this
alternative workflow, traditional error metrics for binary forecasts, such
as the probability of detection (POD) or equitable threat score (ETS),
are introduced. Similarly, higher POD or ETS values suggest better fore-
casts. In what follows, the two variants of the neighborhood verification
should be referred to as the fraction-field method and upscaling method,
respectively.

One of the essential steps in neighborhood-based forecast verifica-
tion is the determination of one or more threshold values, by which
the original continuous random variable is classified into a binary or
categorical variable. In the usual case, the selection of the threshold
is largely based on the forecaster’s belief, which can be subjective.
Therefore, an automatic threshold segmentation method is proposed
in this work. The theory of the segmentation method is based on the
fact that the clear-sky index has a bimodal distribution, and thus can
be modeled using a mixture model. More specifically, the bimodal
distribution is modeled as a semi-parametric distribution with a mixture
of two- or three-component (skewed) normal. This proposal is innova-
tive and general; it can be applied to all cases insofar as a clear-sky
index field is available. In this work, a three-component skew-normal
mixtures model is used, which classifies the clear-sky index into three
bins, each corresponding to a sky condition, namely, clear-, overcast-,
and other-sky conditions with the clear-sky index being located in the
middle of these two extreme conditions.

The empirical part of the work verifies and compares two reanalysis
datasets, against a satellite-derived irradiance dataset, over Europe. It
should be noted that reanalyses are no different from NWP forecasts,
except that the former is a form of hindcasting and is typically run over
a short horizon with a ‘‘frozen’’ model. The two reanalysis products are
the National Aeronautics and Space Administration’s Modern-Era Ret-
rospective Analysis for Research and Applications, version 2 (MERRA-
5

2), and the European Centre for Medium-Range Weather Forecasts f
(ECMWF’s) fifth-generation reanalysis (ERA5), whereas the satellite-
derived irradiance product is the ECMWF’s Copernicus Atmosphere
Monitoring Service (CAMS) Radiation Service (CAMS-Rad). Various
accuracy metrics are applied to assess the forecasting skills of these
datasets.

The remaining part of the work is organized as follows. Section 2
introduces the mathematical principles of the neighborhood approach,
along with the specific implementation steps, and introduces various
error metrics, including FSS and RMSE for the faction-field method,
and POD and ETS for the upscaling method. Additionally, it introduces
an automatic threshold segmentation method using a three-component
skew-normal mixtures model that removes much subjectivity from
the verification procedure. Subsequently, Section 3 presents a brief
overview of the observation and forecast datasets, alongside the in-
structions on how to access and utilize them. Section 4 presents the
numerical results of the verification. The verification is divided into
absolute verification and comparative verification [51], with the former
being concerned with the performance of an individual forecasting sys-
tem and the latter with several systems. Absolute verification primarily
concentrates on the forecasting performance within a single forecasting
system, as detailed in Sections 4.1 and 4.2. Comparative verification
involves comparing the forecasting performance between two distinct
systems, which is put forth in Section 4.3. In Section 4.4, the efficacy
of the automatic threshold segmentation method is tested. Finally,
Section 5 provides a summary and analysis of the research content, as
well as the main findings of this study.

2. Methodology

It should be first noted that solar irradiance is a sub-grid process,
in that, irradiance values in adjacent grid pixels are susceptible to the
influence of small-scale spatial displacements. On this point, a proper
spatial verification method should allow certain displacement in spa-
tial neighborhoods, which is gauged by the neighborhood scale [26].
Besides allowing some displacements, smoothing can also effectively
mitigate forecast errors induced by scale mismatch. It evaluates the
similarity between forecasts and observations within a spatio-temporal
neighborhood rather than at the grid-box scale. Ebert [50] suggested
that the incorporation of observational data from within the proximate
grid boxes surrounding matching observational points lends greater
rationality. For that reason, neighborhood spatial smoothing is adopted
in this study to mitigate the forecast errors arising from spatial dis-
placements, thereby surmounting the positional constraints inherent in
conventional forecast verification at point locations.

2.1. The neighborhood approach for spatial forecast verification: The
fraction-field method

The terminology and notations are first established to describe
the neighborhood methods within a common verification framework.
The symbols 𝑥 and 𝑓 are used to denote observations and forecasts,
respectively. Suppose 𝜅, the clear-sky index, is spatially indexed by 𝑖
and 𝑗, which indicates the position of a grid box on a two-dimensional
lattice, a particular observation is then denoted with 𝜅𝑥(𝑖, 𝑗) and the
corresponding forecast is 𝜅𝑓 (𝑖, 𝑗). Both 𝜅𝑥(𝑖, 𝑗) and 𝜅𝑓 (𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑠,
re images, or snapshots. Since the verification usually takes place over
he entire lattice, for convenience, 𝜅𝑥 and 𝜅𝑓 are used to denote the

observed and forecast clear-sky index fields.
To facilitate verification, the images are often converted to binary

images, for which an event needs to be defined [26]. The observed
and forecast binary images are denoted with 𝐼𝑥 and 𝐼𝑓 , respectively. In

eteorological forecasting of continuous random variables, an event is
ypically defined by the forecast variable (e.g., rainfall or wind speed)
xceeding a certain threshold. In solar irradiance forecasting, the event
an be defined as the clear or cloudy state of the sky. For instance,
or an arbitrary location (𝑖, 𝑗), one can define a clear-sky situation as
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𝜅(𝑖, 𝑗) ≥ 0.9, so that 𝐼𝑥(𝑖, 𝑗) and 𝐼𝑓 (𝑖, 𝑗) take the value 1 if 𝜅(𝑖, 𝑗) ≥
0.9, and 0 otherwise. Hence, by comparing 𝐼𝑓 to 𝐼𝑥, the forecaster
can obtain information relevant to verification, such as how often the
clear-sky situations can be correctly forecast. Similarly, if the capability
of forecasting the overcast situations is of interest, one can define the
indicator functions to be 1 if 𝜅(𝑖, 𝑗) < 0.2, 0 otherwise.

Both 𝜅(𝑖, 𝑗) ≥ 0.9 and 𝜅(𝑖, 𝑗) < 0.2 are examples of threshold rules,
i.e., the rules that define the indicator functions. On this point, many
operators, such as ‘‘≥’’, ‘‘≤’’, ‘‘>’’, or ‘‘<’’, are all suitable for defining the
threshold rules. Stated differently, the user can decide how the event
is defined, according to his particular verification needs. For instance,
if the ‘‘≥’’ rule is used, and is given as follows:

𝐼𝑥(𝑖, 𝑗) =
{

0, 𝜅𝑥(𝑖, 𝑗) < 𝜂;
1, 𝜅𝑥(𝑖, 𝑗) ≥ 𝜂,

(1)

𝐼𝑓 (𝑖, 𝑗) =
{

0, 𝜅𝑓 (𝑖, 𝑗) < 𝜂;
1, 𝜅𝑓 (𝑖, 𝑗) ≥ 𝜂,

(2)

where 𝜂 is the threshold value. Sometimes, instead of using 𝜅𝑥 and
𝜅𝑓 , a smoothed version of the clear-sky index field can be used. This
smoothed field is known as the fraction field.

For each grid point in the clear-sky index field, its smoothed value
is calculated based on the values of the surrounding grid points within
a neighboring window with a size of 𝑚 × 𝑚, where 𝑚 is called the
spatial resolution of verification. To denote a size-𝑚 × 𝑚 neighborhood,
the operator ⟨⋅⟩𝑚 is used. The results are shown in Eqs. (3) and (4),
where ⟨𝐼𝑥⟩𝑚 denotes the observed fractional field obtained from the
binary field 𝐼𝑥 in size of 𝑚 × 𝑚 neighborhood, and ⟨𝐼𝑓 ⟩𝑚 denotes the
forecast fractional field obtained from the binary field 𝐼𝑓 in size of
𝑚 × 𝑚 neighborhood [29].

⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) =
1
𝑚2

𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝐼𝑥

(

𝑖 + 𝑘 − 1 −
(𝑚 − 1)

2
, 𝑗 + 𝑙 − 1 −

(𝑚 − 1)
2

)

, (3)

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) =
1
𝑚2

𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝐼𝑓

(

𝑖 + 𝑘 − 1 −
(𝑚 − 1)

2
, 𝑗 + 𝑙 − 1 −

(𝑚 − 1)
2

)

. (4)

In this context, (𝑖, 𝑗) denotes the desired grid box position, where 𝑖
ranges from 1 to 𝑁𝑥, with 𝑁𝑥 representing the number of columns
in the entire verification domain, and 𝑗 ranges from 1 to 𝑁𝑦, with
𝑁𝑦 representing the number of rows in the whole verification domain.
Since the neighborhood of a grid box should be centered on it, 𝑚 has to
take odd integer values, that is, 𝑚 ∈ {1, 3, 5,…}. Clearly then, if some
scores such as FSS are used to evaluate forecasts, their values often
depend upon the value of 𝑚. 𝑘 and 𝑙 represent the row and column
indices, respectively, of a neighborhood window with a size-𝑚×𝑚, both
ranging from 1 to 𝑚.

To facilitate understanding, Fig. 1 shows a toy example of an
observed binary field and the corresponding forecast binary field. The
pixel values within individual grid boxes signify the occurrences of
the events. The forecast data is assumed to entail a displacement
to the right by one grid box with respect to the observed data. At
the center point of the neighborhood window with side 𝑚 = 5, the
observed binary field value is 1 and the forecast binary field value is
0. Hence, when comparing the forecast event value and the observed
event value at this point location, the forecast is incorrect. Nonetheless,
when employing Eqs. (3) and (4), one may find that ⟨𝐼𝑥⟩5 = ⟨𝐼𝑓 ⟩5 =
10∕25 at that point location, indicating quite a good forecast. In short,
spatial neighborhood smoothing can effectively mitigate forecast errors
induced by minor spatial displacements.

Since the goal is to create a smoothed field, may it be observed or
forecast, one may extend the preceding calculation by invoking kernels.
Stated differently, instead of averaging binary values in space, adding
kernels allows a smoother transition among values in the neighbor-
hood. Various choices of kernels can be employed for that purpose,
such as the mean and Gaussian kernels. In this study, a mean filter
6

Fig. 1. A toy image of an observed binary field and forecast binary field at the same
spatio-temporal location are presented, with blue squares representing neighborhood
windows with a scale of 𝑚 = 5.

convolution kernel is applied to the binary domain, and Eqs. (3) and
(4) can be rewritten as Eqs. (5) and (6):

⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) =
𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝐼𝑥

(

𝑖 + 𝑘 − 1 −
(𝑚 − 1)

2
, 𝑗 + 𝑙 − 1 −

(𝑚 − 1)
2

)

𝐾𝑚(𝑘, 𝑙),

(5)

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) =
𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝐼𝑓

(

𝑖 + 𝑘 − 1 −
(𝑚 − 1)

2
, 𝑗 + 𝑙 − 1 −

(𝑚 − 1)
2

)

𝐾𝑚(𝑘, 𝑙),

(6)

where 𝐾𝑚(𝑘, 𝑙) is the convolution kernel of the 𝑚×𝑚 mean filter, which
can be expressed as

𝐾𝑚 = 1
𝑚2

⎛

⎜

⎜

⎜

⎜

⎝

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠

. (7)

When kernel-based smoothing is applied to a binary image, in a
rolling manner from top left to bottom right, a smoothed image can be
obtained. Fig. 2 illustrates the procedure with the same forecast field
as Fig. 1(b), but with a window size of 3 to facilitate understanding.
In summary, the neighborhood verification workflow consists of the
following three steps:

1. Convert the clear-sky index fields to binary images according to
a definition of the event, i.e., 𝜅𝑥 → 𝐼𝑥, and 𝜅𝑓 → 𝐼𝑓 .

2. Define a series of spatial resolutions and compute the corre-
sponding smoothed images, i.e., 𝐼𝑥 → ⟨𝐼𝑥⟩𝑚, and 𝐼𝑓 → ⟨𝐼𝑓 ⟩𝑚,
𝑚 ∈ {1, 3, 5,…}. It is common to have multiple resolutions de-
fined so that the forecast verification can reveal the performance
over different spatial scales.

3. Compute error statistics using ⟨𝐼𝑥⟩𝑚, ⟨𝐼𝑓 ⟩𝑚.

This procedure is exemplified in Figs. 3 and 4, using data from
a single time slice (at 12:00 UTC on 4 August 2016) over Europe.
Fig. 3(a) shows the observed clear-sky index field from CAMS-Rad
(i.e., the AGATE volume, see Section 3 for more description), as well
as the forecast fields from MERRA-2 and ERA5. The continuous fields
are converted to binary fields based on a decision rule of 𝐼𝜅>0.5 =
1, where pixels are set to 1 if the condition is met and 0 otherwise;
the results are shown in Fig. 3(b). The deep-blue patches represent
𝜅 ≤ 0.5, indicating a higher cloud cover over those patches; it can be
seen that the areas of the deep-blue patches in MERRA-2 are smaller.
Comparing the two binary forecast fields, the one from ERA5 resembles
the observation more closely. Fig. 4 displays the results following
the smoothing process. Smoothed fields at two neighborhood scales,
namely, 𝑚 = 7 and 𝑚 = 15. As the neighborhood scale increases, the
clear-sky index field is smoothed within the neighborhood window,
resulting in reduced sharpness. Based on the visualization of the clear-
sky index, it is subjectively evident that ERA5, when compared to
MERRA-2, demonstrates a closer alignment with observation in terms
of cloud coverage and clear-sky areas.
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Fig. 2. Mean kernel-based smoothing is applied to a binary image.

Several error metrics (i.e., performance measures) can gauge the
imilarity between the observed and forecast images. RMSE is one of
he most intuitive options, as it is a performance measure that gauges
he accuracy of forecasts. It is defined as:

MSE =
√

1
|𝑠|

∑

(𝑖,𝑗)∈𝑠

[

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) − ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗)
]2, (8)

where 𝑠 is the total verification domain, and |𝑠| is the total number
of pixels in the domain, i.e., the cardinality of 𝑠. Since both ⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗)
and ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) are fraction fields, Ebert [50] calls the square of RMSE
(i.e., mean square error), in this context, the fractions Brier score (FBS):

FBS = 1
|′

𝑠|

∑

(𝑖,𝑗)∈′
𝑠

[

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) − ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗)
]2 . (9)

Eqs. (8) and (9) are almost identical. Besides the square root, another
minor difference is with the domain of aggregation: RMSE is computed
over the entire verification domain 𝑠, whereas FBS is only computed
over ′

𝑠, which is the set containing all neighborhoods. Stated simply,
|′

𝑠| is the total number of pixels in the verification domain minus
those boundary pixels without a complete neighborhood—in the case
of Fig. 1, |′

𝑠| = 9; in the case of Fig. 2, |′
𝑠| = 25. Both RMSE and

FBS are negatively oriented performance measures (i.e., the smaller the
better).

However, neither RMSE nor FBS alone is entirely useful, as their
numerical values highly depend on the frequency of the event itself.
As such, Roberts and Lean [29] developed an error metric for spatial
forecast verification, namely, FSS, which compares the forecast and
observed fractional fields within spatial neighborhoods. FSS, being a
skill score, takes the same form as the forecast skill score that is familiar
to most solar forecasters, that is:

FSS = 1 − FBS
1

|′
𝑠|

[

∑

(𝑖,𝑗)∈′
𝑠
⟨𝐼𝑓 ⟩2𝑚(𝑖, 𝑗) +

∑

(𝑖,𝑗)∈′
𝑠
⟨𝐼𝑥⟩2𝑚(𝑖, 𝑗)

] . (10)

In other words, FSS is one minus the ratio of the performance of fore-
casts of interest and that of a set of reference forecasts. It is also worth
noting that ⟨𝐼 ⟩ (𝑖, 𝑗) represents the observed probability that the event
7

𝑥 𝑚 l
is true within the neighbor of (𝑖, 𝑗). Similarly, ⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) represents
the forecast probability that the event is true within the neighbor of
(𝑖, 𝑗). As such, FSS is often classified into the knowledge domain of
probabilistic forecasting. The denominator in Eq. (10) represents the
FBS of some low-performance reference forecasts. More specifically,
the denominator represents the largest possible FBS obtained in the ob-
servation and forecast domains. It signifies the worst possible forecast
scenario where there is no overlap at all between the forecast and the
observed event.

In neighborhood verification, a forecast is said to be useful if the
forecast frequency of the event is similar to the observed frequency of
the event [26]. In that, the smaller the FBS value is, the larger the FSS
would be, and the better the forecast is perceived to be. The range of
FSS is between 0 and 1, which differs from the regular skill score that
can reach negative values. This can be seen if the numerator in Eq. (10)
is expanded:

∑

(𝑖,𝑗)∈′
𝑠

[

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) − ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗)
]2

∑

(𝑖,𝑗)∈′
𝑠

⟨𝐼𝑓 ⟩
2
𝑚(𝑖, 𝑗) +

∑

(𝑖,𝑗)∈′
𝑠

⟨𝐼𝑥⟩
2
𝑚(𝑖, 𝑗) − 2

∑

(𝑖,𝑗)∈′
𝑠

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗)⟨𝐼𝑥⟩𝑚(𝑖, 𝑗)

∑

(𝑖,𝑗)∈′
𝑠

⟨𝐼𝑓 ⟩
2
𝑚(𝑖, 𝑗) +

∑

(𝑖,𝑗)∈′
𝑠

⟨𝐼𝑥⟩
2
𝑚(𝑖, 𝑗), (11)

ecause ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) and ⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) are strictly non-negative. The mag-
itude of the FSS value indicates how well the forecast matches the
bservation, with 0 indicating a complete mismatch and 1 indicating
complete match. When FSS = 0, ∑

(𝑖,𝑗)∈′
𝑠
⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗)⟨𝐼𝑥⟩𝑚(𝑖, 𝑗), ne-

essitating either ⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) or ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗) being 0, ∀(𝑖, 𝑗) ∈ ′
𝑠, i.e., a

omplete mismatch. When FSS = 1, ∑(𝑖,𝑗)∈′
𝑠

[

⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) − ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗)
]2 =

, necessitating ⟨𝐼𝑓 ⟩𝑚(𝑖, 𝑗) = ⟨𝐼𝑥⟩𝑚(𝑖, 𝑗), ∀(𝑖, 𝑗) ∈ ′
𝑠, i.e., a complete

atch.
Roberts and Lean [29] defined the ‘‘random skill score’’ and the

‘useful skill score’’. The random skill score is obtained from a random
orecast and is equivalent to the ratio of the area with clear and cloud-
ess conditions. The proportion of the area in the observation or forecast
ields where the clear-sky indexes exceed a specified threshold, often
eferred to as the base rate, is denoted as 𝑓0. At the neighborhood scale
f 𝑚 = 1, falling between perfect prediction and random prediction, the
ormula for the ‘‘useful skill score’’ is as follows:

SSuniform = 0.5 + 𝑓0∕2, (12)

here the base rate 𝑓0 is defined as

0 =

∑𝑁𝑥
𝑖=1

∑𝑁𝑦
𝑗=1 𝐼𝑥(𝑖, 𝑗)

𝑁𝑥𝑁𝑦
, (13)

with (𝑖, 𝑗) denoting the desired grid box position, where 𝑖 ranges from
1 to 𝑁𝑥, with 𝑁𝑥 representing the number of columns in the entire
verification domain, and 𝑗 ranges from 1 to 𝑁𝑦, with 𝑁𝑦 representing
he number of rows in the whole verification domain. It is generally
onsidered that when the FSS value exceeds FSSuniform, the forecast con-
ains valuable information and is regarded as skillful. Conversely, when
he FSS value computed for the forecast dataset falls under FSSuniform,
t is deemed that the forecast dataset lacks valuable information or
ontains only a minimal amount of useful information [29,52].

.2. An alternative workflow for the neighborhood approach: The upscaling
ethod

The first two steps in the preceding verification workflow can be
xchanged, that is, the original clear-sky images 𝜅𝑥 and 𝜅𝑓 are first
moothed, and then converted to binary images according to a preset
hreshold [27]. This variant of the neighborhood approach is known as
he upscaling method, as smoothing is essentially a form of upscaling
i.e., making the field ‘‘blurry,’’ therefore representing features on a

arger scale).
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Fig. 3. Example of various fields involved in neighborhood approaches. Data over Europe at 12:00 UTC on 4 August 2016 from CAMS-Rad satellite-derived clear-sky index,
MERRA-2 reanalysis forecasts, and ERA5 reanalysis forecasts are displayed. Subplot (a) shows the clear-sky index, 𝜅, ranging from 0 to 1.05; (b) shows the binary event field with
a threshold of 0.5 (i.e., a pixel takes the value 1, if 𝜅 > 0.5, 0 otherwise).

Fig. 4. The smoothed fields at two neighborhood scales: (a) 𝑚 = 7 and (b) 𝑚 = 15.
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Table 2
Categorical contingency table defining the possible situations during forecast
verification of a binary.

Observed Forecast Category

𝐼↑
𝑥 (𝑖, 𝑗) = 1 𝐼↑

𝑓 (𝑖, 𝑗) = 1 Hits
𝐼↑
𝑥 (𝑖, 𝑗) = 0 𝐼↑

𝑓 (𝑖, 𝑗) = 1 False alarms
𝐼↑
𝑥 (𝑖, 𝑗) = 1 𝐼↑

𝑓 (𝑖, 𝑗) = 0 Misses
𝐼↑
𝑥 (𝑖, 𝑗) = 0 𝐼↑

𝑓 (𝑖, 𝑗) = 0 Correct rejections

For instance, if the smoothed 𝜅 images are denoted as ⟨𝜅𝑥⟩𝑚 and
𝜅𝑓 ⟩𝑚, the quantities being verified are

𝐼↑𝑥 (𝑖, 𝑗) =
{

0, ⟨𝜅𝑥⟩𝑚(𝑖, 𝑗) < 𝜂;
1, ⟨𝜅𝑥⟩𝑚(𝑖, 𝑗) ≥ 𝜂,

(14)

↑
𝑓 (𝑖, 𝑗) =

{

0, ⟨𝜅𝑓 ⟩𝑚(𝑖, 𝑗) < 𝜂;
1, ⟨𝜅𝑓 ⟩𝑚(𝑖, 𝑗) ≥ 𝜂,

(15)

here 𝐼↑𝑥 and 𝐼↑𝑓 are the observed and forecast binary fields, converted
rom the upscaled clear-sky images.

Since 𝐼↑𝑥 and 𝐼↑𝑓 are binary, the performance of the forecast can
e gauged using various accuracy measures for binary variables. One
an also use FSS to quantify the difference between 𝐼↑𝑥 and 𝐼↑𝑓 , but
raditional metrics designed specifically for binary fields are certainly
ore apt. Table 2 shows the categorical contingency table defining

he possible situations during forecast verification of a binary event at
ocation (𝑖, 𝑗).

Based on the number of hits (#H), false alarms (#FA), misses (#M),
nd correct rejections (#CR), several statistics can be computed over
he verification lattice. For instance, the probability of detection (POD)
s given as:

OD = #H
#H + #M , (16)

which measures the fraction of observed events that are correctly
forecast. Another choice is the equitable threat score (ETS), which is
given as:

ETS =
#H − #Hrandom

#H + #M + #FA − #Hrandom
, (17)

here

Hrandom =
(#H + #M) × (#H + #FA)
#H + #M + #FA + #CR . (18)

ETS is a measure of the fraction of all events forecast and/or observed
that are correctly diagnosed, and adjusted for those hits that could be
attributed to random chance. In short, all measures that describe the
relationship between the four counts (hits, false alarms, misses, and
correct rejections) can be used for upscaling-based spatial verification.

2.3. Automatic segmentation of thresholds using three-component skew-
normal mixtures model

Up to this stage, the neighborhood approach for spatial forecast
verification has been introduced. However, a remaining issue is to
determine the neighborhood size and threshold value, of which the
choice would impact the verification. Since the neighborhood size is
related a priori to the scale of spatial features, the 𝑚 that leads to
the highest FSS is often interpreted as the preferred choice that can
maximize the utility of the neighborhood approach. As for the threshold
value, its determination can be problematic for continuous random
variables, such as solar irradiance or clear-sky index. In the usual case,
one has to test many different threshold values, in order to examine
the impact of the choice on FSS. This process results in extensive com-
putations, lengthy program execution times, high memory usage, and
intricate subsequent data processing, and it often requires experienced
forecasters to subjectively identify the optimal combination values
through the visualized images. To that end, an automatic threshold
9

selection algorithm is proposed in this study, to segment the range of
the clear-sky index and convert it into a binary (or multi-categorical)
variable.

Extensive research has been conducted on the statistical distri-
butions of the clearness index and clear-sky index at various time
scales [53–55]. These studies indicate that the probability density of
the clearness index often exhibits a bimodal distribution, which is what
the theory of segmentation is based upon. The bimodal distribution may
be expressed as a weighted sum of two or more unimodal parametric
distributions. The weighted sum of multiple parametric distributions
of the same family is known as a finite mixture model in statistics. A
common form of finite mixture density is

𝑔(𝑧;𝛩) =
𝑛
∑

𝑡=1
𝑝𝑡𝑓 (𝑧;𝜽𝑡), (19)

here 𝑝𝑡 ≥ 0, ∑𝑛
𝑡=1 𝑝𝑡 = 1, for 𝑡 = 1,… , 𝑛, are the mixture weight; 𝑓 (𝑧;𝜽𝑡)

is the probability density function (PDF) of the 𝑡th component in the
mixture, parameterized by parameter 𝜽𝑡; 𝛩 = (𝑝1,… , 𝑝𝑛,𝜽⊤1 ,… ,𝜽⊤𝑛 )

⊤;
nd 𝑛 is the number of components in the finite mixture model.

In choosing 𝑛 and 𝑓 (⋅), different modelers hold diverse opinions,
ut the vast majority of the literature suggests using a two- or three-
omponent normal mixture, of which the latter is slightly more accurate
nd thus more popular than the former [54,55]. Fig. 5(a) and (b)
llustrate the PDFs of the 𝜅 over Europe at 12:00 UTC on 20 August
016 and 20 June 2016, respectively—the data is to be introduced
ater. From this figure, both PDFs show clear bimodality, corresponding
o the clear and cloudy states of the sky, with the left mode being
roader, while the right mode tends to be sharper, which agrees with
he observation reported in the literature [e.g., 55]. Overlaid on the
DFs are the fitted three-component normal mixture densities (drawn
s the gray dashed lines). It is evident that mixture density is able to
xplain the empirical density to a large extent. However, as also can
e seen from the figure, the two modes of the empirical density are
kewed—it exhibits positive skewness at low 𝜅 values and negative
kewness at high 𝜅 values—which renders the normal component den-
ity somewhat inappropriate. On this point, this work proposes using
he skewed-normal mixture models, which are also overlaid in Fig. 5.
he advantage is immediately obvious, from just eye-balling.

The skew-normal distribution is an extension of the normal distri-
ution that introduces a skewness parameter [56]. A random variable

follows a skew-normal distribution with location parameter 𝜇, scale
arameter 𝜎2, and skewness parameter 𝜆 [57]. The density formula is
xpressed as

(𝑧;𝜽) = 2𝜙(𝑧;𝜇, 𝜎2)𝛷
(

𝜆(𝑧 − 𝜇)
𝜎

)

, (20)

where 𝜽 = (𝜇, 𝜎2, 𝜆)⊤; 𝜙 is the PDF of a normal distribution with
ean 𝜇 and variance 𝜎2, whereas 𝛷 is the cumulative distribution

unction of the standard normal distribution. In this study, the PDF
f the 𝜅 is fitted using the three-component skew-normal mixtures.

The parameter vector of this mixture distribution, denoted as 𝛩 =
(𝑝1, 𝑝2, 𝑝3,𝜽⊤1 ,𝜽

⊤
2 ,𝜽

⊤
3 )

⊤, is estimated through maximum likelihood using
n expectation–maximization algorithm [56].

As shown in Fig. 5, the three component densities from left to right
epresent three distinct atmospheric states: overcast conditions, other-
ky conditions, and clear-sky conditions [54]. In accordance with the
itted density of the clear-sky index, the three distinct weather states
an be determined based on the intersections between the component
ensities, which will subsequently be used as thresholds during forecast
erification. The classification rule corresponding to thresholds of the
lear-sky index is

𝑥(𝑖, 𝑗) =

⎧

⎪

⎨

⎪

0, 𝜅𝑥(𝑖, 𝑗) <
𝜂1 + 𝜂2

2
;

1, 𝜅 (𝑖, 𝑗) ≥
𝜂1 + 𝜂2 ,

(21)
⎩

𝑥 2
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Fig. 5. Subplot(a) and (b) introduce the PDF of the 𝜅 over Europe for satellite-derived observational data at 12:00 UTC on 20 August 2016 and 20 June 2016, respectively. The
PDF is fitted using a three-component normal mixture (drawn as the gray dashed lines) or a three-component skew-normal mixture (drawn as the red dashed lines). The three
components of a three-component skew-normal mixture model are depicted as solid lines, corresponding from left to right to the three atmospheric states: overcast conditions,
other conditions, and clear-sky conditions.
where 𝜂1 represents the 𝜅 value corresponding to the intersection of
the component PDFs for overcast conditions and other-sky conditions,
and 𝜂2 corresponds to the 𝜅 value at the intersection of the component
PDFs for other-sky conditions and clear-sky conditions. In accordance
with the results discussed in Section 4.1, low thresholds tend to produce
excessively high skill scores, giving rise to an unreasonable overestima-
tion phenomenon. Conversely, excessively high thresholds often result
in lower skill scores, contributing to a noticeable underestimation.
Hence, in this context, the automatic threshold segmentation method
continues to convert the clear-sky index range into a binary variable,
with the threshold set at (𝜂1 + 𝜂2)∕2. When the 𝜅 value is lower
than (𝜂1 + 𝜂2)∕2, 𝐼𝑥(𝑖, 𝑗) is assigned the value of 0. When the 𝜅 value
surpasses (𝜂1+𝜂2)∕2, 𝐼𝑥(𝑖, 𝑗) is assigned the value of 1. This classification
rule is closely linked to sky conditions, which makes the threshold
segmentation algorithm logical. One should note that the automatic
threshold segmentation method does not impact the calculation of the
statistics for FSS and binary variables (e.g., POD or ETS).

3. Data description

CAMS-Rad is a joint initiative managed by the European Commis-
sion and the European Space Agency, as part of the earth meteorologi-
cal observation system [58]. CAMS-Rad provides three commonly used
solar irradiance components, namely, the global horizontal irradiance,
diffuse horizontal irradiance, and beam normal irradiance. The solar
irradiance provided by CAMS-Rad is typically available for download in
a location-by-location fashion (http://www.soda-pro.com). However,
for spatial forecast verification, irradiance over wide geographical areas
is needed. On this point, the Europe and Africa volumes of the data,
which are named AGATE and JADE, can be downloaded as HDF5 files,
from the same website, upon request. The observation data selected for
this study is the AGATE volume over Europe, over a six-month period
from June to December 2016. The temporal resolution of AGATE is 1 h.

The forecasts are obtained from the ERA5 and MERRA-2 reanalyses.
ERA5 is the fifth-generation atmospheric reanalysis dataset by the
ECMWF, covering a period from 1940 to the present [59,60]. ERA5
assimilates historical observation data and uses a legacy version of the
ECMWF’s High-Resolution model to make forecasts over a 12-h period
in each run, so as to create a globally comprehensive atmospheric and
surface meteorological dataset with high temporal and spatial resolu-
tion. It is the latest reanalysis product following the third-generation
ERA-Interim dataset [59]. ERA5 features a higher spatial resolution
(0.25◦ × 0.25◦) and temporal resolution (hourly), accessible through
the Climate Data Store (CDS), which is available at https://cds.climate.
10
copernicus.eu. The variable ‘‘surface downward solar radiation,’’ ab-
breviated as SSRD, provides the global horizontal irradiance in units
of J/m2. To convert the SSRD values in W/m2, simply divide them by
3600.

MERRA-2 introduces the assimilation of aerosol information into
reanalysis, for the first time, to improve the simulation of meteorolog-
ical data changes [61,62]. It is a reanalysis product developed by the
Global Modeling and Assimilation Office of the National Aeronautics
and Space Administration using the Goddard Earth Observing System
Model. This dataset covers a long-term time series from 1980 to the
present day, and provides global coverage with a spatial resolution
of 0.5◦ × 0.625◦ and a temporal resolution of 1 h (https://disc.gsfc.
nasa.gov). Additionally, Bright et al. [63] made a Python library for
downloading MERRA-2 data. The metadata of the three datasets is
provided in Table 3.

4. Result and discussion

The dimensionality and complexity of the spatial forecast verifica-
tion exercises involved in this work are rather high. More specifically,
verification is to be conducted through the two variants of the neigh-
borhood methods (recall Sections 2.1 and 2.2), which further contain
several accuracy measures. For each variant, different choices of the
neighboring window 𝑚 and threshold 𝜂 should be considered. Since
an automatic threshold segmentation method has been proposed, its
efficacy has to be gauged with respect to the traditional ad hoc thresh-
old determination method. Another important mission is to conclude
whether spatial forecast verification holds advantages over point fore-
cast verification; this also needs to be discussed. Additionally, it is
noted that spatial forecast verification is commonly conducted for a
single time instance, in that, the procedure has to be repeated as many
times as the number of time instances in the verification dataset, which
typically spans months if not years. Last but not least, two reanalysis
products are to be examined and compared in this work, which again
contributes to the dimensionality of verification. It is clearly not effi-
cient to tabulate and display all results. Hence, a verification workflow
is carefully designed, as depicted in Fig. 6, to facilitate all discussions
that need to be made here.

Most generally, forecast verification can be divided into two kinds,
namely, absolute verification and comparative verification [51]. The
former focuses on evaluating the forecast performance of a single
forecasting system, whereas the latter involves the comparison of per-
formance among two or more forecasting systems, generated under
either identical or different conditions [51]. Since absolute verification

http://www.soda-pro.com
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov
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Table 3
Basic information of grid irradiance products.

Dataset Domain Spatial resolution (lat ×lon) Temporal resolution Spatial range (N, E, S, W)

CAMS-Rad 275 × 126 pixels 0.25◦ × 0.25◦ 1 h 60◦ , 44.6◦ , 35◦ ,−10.2◦

ERA5 275 × 126 pixels 0.25◦ × 0.25◦ 1 h 60◦ , 44.6◦ , 35◦ ,−10.2◦

MERRA-2 219 × 100 pixels 0.50◦ × 0.625◦ 1 h 60◦ , 44.5◦ , 35◦ ,−10.0◦
Fig. 6. A forecast verification workflow for the neighborhood approach.
s concerned with only a single forecasting system, ERA5 is used
ithout loss of generality. A total of three verification exercises are
evised for absolute verification. First, utilizing the ERA5 forecasts for
2:00 UTC timestamps in August 2016 (i.e., a total of 31 instances), the
ffects of neighborhood scale and threshold selection on performance
easures are inquired in Section 4.1. Stated more precisely, FSS, RMSE,
OD, and ETS are computed under a combination of different neigh-
orhood scales and threshold values. Subsequently, in Section 4.2, a
oy example is presented to examine the neighborhood method’s ability
o discern good forecasts from bad ones. For this purpose, the CAMS-
ad observation for 12:00 UTC on 4 August 2016, is used and the
orresponding ERA5 forecast is taken as the ‘‘good’’ forecast, whereas
he ‘‘bad’’ forecast is deliberately selected from another day (12:00 UTC
n 30 November 2016). On this point, if the neighborhood method
s rational, it should yield a much higher score/performance for the
‘good’’ forecast than the ‘‘bad’’ one. Using the same two forecasts,
he advantage of spatial forecast verification over point forecast ver-
fication is investigated. Through this exercise, it is demonstrated that
oint forecast verification may assign a high score even if the under-
ying forecast is wrong, whereas the spatial verification method is not
iable for such deficiencies. The subsequent stage entails comparative
erification. In Section 4.3, a comparative analysis utilizing the FSS
ethod is carried out to evaluate the performance of two forecasting

ystems, namely, ERA5 and MERRA-2, in predicting solar irradiance.
RA5 and MERRA-2 forecast datasets come from all 9:00 to 14:00
TC timestamps in August 2016 (i.e., a total of 186 instances), over
urope. Through comparative verification, it is concluded that the
verall forecast performance of solar irradiance in the ERA5 system
urpasses that of the MERRA-2 system. Thus far, all exercises concern
ust traditional spatial forecast verification. In Section 4.1, the efficacy
f the proposed automatic threshold segmentation is demonstrated.

.1. Effects of neighborhood scale and threshold on performance measures

The quantitative results of spatial forecast verification based on
he neighborhood approach depend on the neighborhood scales and
hreshold values. To investigate the effect of neighborhood scales and
hreshold values on verification, the neighborhood scales are set to vary
rom 𝑚 = 1 to 𝑚 = 15, whereas the threshold values are selected to
11

ange from 0.5 to 0.9. Using ERA5 forecasts from 12:00 UTC on days in
August 2016 (i.e., a total of 31 instances) and the corresponding CAMS-
Rad observations over Europe, the FSSs and RMSEs are computed with
respect to the fraction-field method, whereas the PODs and ETSs are
computed with respect to the upscaling method. This results in four
tables, which are plotted in the neighborhood-scale-threshold diagrams
as shown in Fig. 7. Each entry in this plot denotes the average value of
the performance metric over the 31 instances.

Fig. 7(a) depicts the FSS values of ERA5 forecasts under the fraction-
field method. The FSS values are enhanced for visibility by overlaying
them with varying shades of colors, where brighter colors indicate bet-
ter forecasting skills—recall that a higher FSS indicates better forecasts,
whereas a score of 1 represents perfect forecasts, and a score of 0
signifies no forecasting skill. As the neighborhood scale increases, FSS
increases, indicating an improvement in the forecasting skill. This is
anticipated because, with a larger neighborhood window, it is more
probable for the forecast fraction to resemble that of the observation.
On the contrary, when adopting a higher threshold, the FSS value de-
creases, indicating a decrease in the apparent forecasting performance.
(The word ‘‘apparent’’ is used because the forecasting performance
realized here depends on the selected threshold and is less related to the
intrinsic performance of forecasts.) In neighborhood-based verification,
one usually selects the threshold that gives the highest FSS as the
final choice—in this case, the choice of 𝜂 = 0.5 would be selected.
This is however problematic, for the value 0.5 is unable to physically
dichotomize the sky condition into clear and cloudy, cf. TH2 values
from Fig. 5; this echoes the need for automatic threshold segmentation.
Fig. 7(b) depicts the RMSE values when different neighborhood scales
and threshold values are used. As the neighborhood scale increases, the
decrease in RMSE indicates that enlarging the neighborhood window
reduces the discrepancies between observations and forecasts, thereby
improving forecasting skills. The RMSE is lowest when 𝑚 = 15 and
𝜂 = 0.5. This observation aligns with the performance of FSS in forecast
verification.

Fig. 7(c) and (d) respectively depict the monthly averaged POD and
ETS of ERA5 forecasts at 12:00 UTC for each day in August 2016, under
different combinations of neighborhood scales and threshold values.
Similar to FSS, higher values of POD and ETS indicate better forecasting
performance. Interestingly, the figure reveals that the POD and ETS
values are relatively insensitive to changes in neighborhood scale, with

variations primarily linked to the choice of threshold. The results of
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Fig. 7. Performance of ERA5 clear-sky index forecasts at 12:00 UTC timestamps in August 2016 over Europe against CAMS-Rad observations, under varying neighborhood scales
and threshold values using the four evaluation metrics. Whereas FSSs and RMSEs are computed under the fraction-field method, PODs and ETSs are computed under the upscaling
method. Better results are coded with brighter colors.
the upscaling method are in agreement with that of the fraction-field
method, in that, higher neighborhood scales and low threshold values
correspond to better apparent performance.

Additionally, spatial smoothing could be selectively employed to
retain the displacement-induced errors that are of reference signifi-
cance. However, in this study, when the neighborhood scale is set to 1
(i.e., without spatial smoothing), the FSSs tend to be lower, as depicted
in Fig. 7 (a). These distinctions are more pronounced in high-resolution
grid datasets [26]. Simultaneously, the FSS values obtained without
spatial smoothing are very close to the useful skill scores (FSSuniform, see
Section 4.2 for details), making it difficult to establish clear criteria to
quantify the quality gap between the relevant forecasts and the useful
forecasts. Accordingly, smoothing is needed for spatial solar forecast
verification.

4.2. A toy example to check the sanity of the neighborhood approach

One of the essential capabilities of performance metrics is to discern
good forecasts from bad ones. Insofar as absolute verification is con-
cerned, one has to be able to conclude whether the forecasts of interest
12
are acceptable solely based on the forecasts themselves. Clearly, then,
RMSE, POD, and ETS offer only limited information for such inquiries.
For instance, it is known that a perfect forecast would correspond to
a POD value of 1 (i.e., all hits no misses). However, since perfect
forecasts are unattainable, the verification would return a POD value
of less than 1. In this case, without a notion of the difficulty of the
forecasting situation, it would be quite difficult to interpret any POD
value obtained thereof. The same can be said for RMSE and ETS. The
situation for FSS is, nevertheless, different. The useful skill score as
defined in Eq. (12) provides just the insights needed.

The blue curve in Fig. 8(a) indicates the FSS values under 𝜂 =
0.5 and 𝑚 = 1, 3,… , 15, using the ERA5 forecast at 12:00 UTC on 4
August 2016; this is referred to as ERA5_case1. The green dashed line
in the figure shows the FSSuniform, which lies beneath the blue curve,
suggesting that the ERA5 forecast is useful. In the same subfigure,
the orange curve marks the FSS values evaluated using a deliberately
selected wrong forecast, which is in fact a forecast issued at 12:00 UTC
on 30 November 2016; this is referred to as ERA5_case2. It can be
seen that the yellow bars, despite being quite high numerically (FSS
≈ 0.8), are lower than FSS , suggesting that the forecast is worse
uniform
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Fig. 8. Subplot(a) and (b) show the FSS values for ERA5_case1 and ERA5_case2 with 𝜂 = 0.5 and 𝜂 = 0.7, respectively.
Fig. 9. Same as Fig. 8(b), but with two additional dashed lines indicating the
point-location skill scores of the two forecasts.

than a random guess, and therefore is poor. In Fig. 8(b), another case
with 𝜂 = 0.7 is shown, and the same conclusion follows. After this
toy example, the FSS should be favored over the other performance
measures, due to its capacity to discern good forecasts from bad ones
through FSSuniform.

Subsequently, the advantage of spatial forecast verification over
point-location forecast verification is elaborated with the same toy
example. The point-location skill score, in the style of FSS, for the
original forecast field (i.e., without dichotomization and smoothing) is
given by:

SS = 1 −
1

|𝑠|

∑

(𝑖,𝑗)∈𝑠

[

𝜅𝑓 (𝑖, 𝑗) − 𝜅𝑥(𝑖, 𝑗)
]2

1
|𝑠|

[

∑

(𝑖,𝑗)∈𝑠
𝜅2
𝑓 (𝑖, 𝑗) +

∑

(𝑖,𝑗)∈𝑠
𝜅2
𝑥(𝑖, 𝑗)

] . (22)

According to this definition, the point-location skill score of the
ERA5 forecast at 12:00 UTC on 4 August 2016, and that of the deliber-
ately selected wrong forecast are marked as the blue and orange dashed
lines, respectively, in Fig. 9; this figure is identical to Fig. 8(b), except
with the two additional dashed lines. Interestingly, the skill scores
computed under the point-location forecast verification framework of
the two cases are quite close (with skill scores of 0.98 and 0.90),
albeit one of the forecasts is entirely nonsense. The limitation of the
point-location verification is immediately obvious. More specifically,
evaluating spatial forecasts with point-location verification metrics can
be inappropriate, as they may issue superficially high scores when the
forecasts are in fact poor. In conclusion, for applications of regional
forecasting that permit small displacement errors, spatial forecast veri-
fication becomes highly necessary for high spatial resolution irradiance
13
Fig. 10. The differences between the monthly average FSS and monthly average
FSSuniform of all 9:00 to 14:00 timestamps in August 2016, with varying neighborhood
scales, evaluated using ERA5 and MERRA-2 forecasts with 𝜂 = 0.5.

products. Conversely, if users are more interested in assessing forecast
accuracy at a specific location, traditional point forecast verification
could be more appropriate.

4.3. Comparison between ERA5 and MERRA-2

To further examine the developed method under the comparative
verification framework, the two sets of forecasts, namely, ERA5 and
MERRA-2, are assessed and compared using FSS. Forecasts from those
9:00 to 14:00 UTC timestamps in August 2016 are used (i.e., a total
of 186 instances). Note that ERA5 has a spatial resolution of 0.25◦ ×
0.25◦, whereas MERRA-2 has a spatial resolution of 0.5◦ × 0.625◦. For
comparison purposes, the two sets of forecasts must be first adjusted
to the same spatial resolution. To that end, the bilinear interpolation
method is utilized to adjust the spatial resolution of ERA5 to match
that of MERRA-2. Using the fraction-field method, FSS values for ERA5
and MERRA-2 are shown in Fig. 10.

Fig. 10 shows the bar chart depicting the differences between the
monthly average FSS and monthly average FSSuniform with varying
neighborhood scales for ERA5 and MERRA-2. As the neighborhood
scale increases, the monthly average FSS values also increase accord-
ingly. The FSS values of ERA5 and MERRA-2 forecasts consistently
exceed FSSuniform, indicating that both sets of forecasts contain valuable
information. However, the monthly average FSS values of ERA5 are
higher than those of MERRA-2, suggesting superior forecasting perfor-
mance for ERA5. The FSS verification results echo the observation made
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Fig. 11. The time series of automatic thresholds of CAMS-Rad satellite observations
through the automatic threshold segmentation method for all 9:00 to 14:00 UTC
timestamps in August 2016.

Fig. 12. The differences between average FSS and average FSSuniform of all 9:00 to
14:00 UTC timestamps in August 2016, with varying neighborhood scales for ERA5
and MERRA-2 forecast verification using automatic threshold segmentation method.

with the binary image of the 𝜅 in Fig. 3(b), i.e., the cloud coverage area
of the ERA5 forecast (at least for that instance) better resembles the
observation. In conclusion, under the fraction-field method, both ERA5
and MERRA-2 are meaningful forecasts, although the former should be
favored over the latter due to its higher skill.

4.4. Verification results of automatic thresholds segmentation

In traditional neighborhood-based spatial forecast verification, the
selection of thresholds has often been subjective, and determining
suitable values has typically involved the computation of multiple sets
of thresholds, as seen in Section 4.1. To eliminate such subjectivity and
improve verification efficiency, a three-component skew-normal mix-
tures model is employed to fit the probability densities of observational
data; recall Section 2.3. The thresholds are determined as the mean
𝜅 values corresponding to the intersections of the component PDFs.
Fig. 11 shows the time series of automatic thresholds of CAMS-Rad
satellite observations through the automatic threshold segmentation
method for all 9:00 to 14:00 UTC timestamps in August 2016. This
method enables the automatic calculation of thresholds based on the
sky conditions, with the threshold values concentrated in the range of
0.7 to 0.8.

Using the same data as Section 4.3, but with automatic threshold
segmentation, the skill scores are presented in Fig. 12. The conclusion
14
Fig. 13. Scatter plots of the FSS calculated through the automatic threshold segmen-
tation method versus the FSS calculated using the traditional threshold determination
method (with 𝜂 = 0.5), with 𝑚 = 7. The ERA5 and MERRA-2 forecasts are from 9:00 to
14:00 UTC timestamps in August 2016, with a total of 186 instances.

that ERA5 is superior to MERRA-2 remains unchanged. However, as
compared to the 𝜂 = 0.5 case in Section 4.3, the forecasts now attain
reduced values for both FSS and FSSuniform. Fig. 13 shows the scatter
plots of the FSS obtained using the automatic threshold segmentation
method and the FSS calculated by the traditional threshold determi-
nation method (with 𝜂 = 0.5), with a neighborhood-scale of 𝑚 = 7.
The forecasts are derived from the ERA5 and MERRA-2 systems for a
total of 186 instances, spanning from 9:00 to 14:00 UTC timestamps
in August 2016. It can be seen that, in comparison to the tradi-
tional threshold method, the FSS values obtained through automatic
threshold segmentation are generally lower. The traditional fraction-
field method posits that higher FSS values indicate better forecasting
performance [26]. However, excessively high FSS values may not be
suitable for the verification of solar irradiance forecast. Similarly, as
observed in Fig. 7, under the traditional threshold method, very high
FSS values obtained with low thresholds or large neighborhood scales
may be misleading, indicating a notable overestimation in forecasting
verification. At this point, it becomes crucial to identify an appropriate
combination of neighborhood scale and threshold value that accurately
reflects forecasting performance. The automatic threshold segmenta-
tion method effectively addresses the overestimation that occurs when
subjective threshold selection is too low. Simultaneously, selecting a
neighborhood scale of 𝑚 = 7 mitigates the risk of excessively high
FSS values resulting from an excessively large neighborhood scale. As
illustrated in Fig. 13, the scatter plots provide a visual representation
supporting the discussion mentioned earlier.

Using the same data as Section 4.2, but computed through the
automatic threshold segmentation using the three-component skew-
normal mixtures model, the skill scores for ERA5_case1 and ERA5_case2
are illustrated in Fig. 14. The conclusions align closely with the results
obtained using the traditional threshold 𝜂 = 0.7. The ERA5_case1
forecast exhibits high accuracy, while the ERA5_case2 forecast performs
worse than random guessing. It is also noteworthy that point-location
verification is not suitable for spatial forecast verification of solar
irradiance.

Therefore, applying the automatic segmentation of thresholds using
the three-component skew-normal mixtures model to neighborhood-
based spatial forecast verification is more rational. It allows for a more
accurate evaluation of the forecasting performance. The automated
threshold segmentation method serves to eliminate subjective threshold
selection. Thresholds can be categorized based on clear sky and cloudy
conditions, with distinct threshold allocations for observational data
across different time series. Furthermore, rational thresholds ensure
a more reasonable FSS value, preventing the overestimation of fore-
casting skill due to the subjective choice of excessively low thresholds
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Fig. 14. Applying the automatic threshold segmentation using the three-component
skew-normal mixture model to calculate the FSS curves for ERA5_case1 and ERA5_case2
data, along with the corresponding point-location verification curves.

or the underestimation of forecasting capability when thresholds are
subjectively set too high.

5. Conclusion

Traditional ground-based forecast verification faces limitations due
to observation location constraints, thereby lacking spatial feature in-
formation. This constraint often results in verification errors caused by
small-scale spatial displacements. This study introduces a
neighborhood-based spatial forecast verification approach to address
such limitations. This approach involves smoothing observational and
forecast data separately using neighborhood windows, relaxing the
requirement for precise matching between observations and forecasts
in a grid scale.

Within the spatial neighborhood smoothing framework, two
workflows—the fraction-field method and the upscaling method—are
employed to assess the forecast performance. Both methods demon-
strated effectiveness in assessing forecast performance under conditions
of moderate to low clear-sky index conditions but displayed a tendency
for underestimation in forecasts with high clear-sky indices. In con-
trast, the accuracy measure FSS is better suited for spatial forecast
verification, as it accurately quantifies forecast performance through
explicit numerical values. Additionally, it encompasses its own useful
skill scores (FSSuniform) for various observations. When the FSS value
surpasses FSSuniform, it indicates the presence of useful information
in the forecast. A higher FSS value corresponds to better forecast
performance, with FSS = 1 representing a perfect match between
forecast and observation. A lower FSS value corresponds to poorer
forecast performance, and FSS = 0 signifies a complete mismatch be-
tween forecast and observation. This study reveals that the FSS values
associated with incorrectly forecast information consistently remain
under FSSuniform. As forecast skill diminishes, there is a corresponding
decrease in FSS values.

Furthermore, experiments indicate that, compared to point-location
forecast verification, neighborhood-based spatial forecast verification
can accurately reflect forecast performance. Skill scores in point fore-
cast verification consistently remain high, making it challenging to dis-
tinguish the quality of forecast skills. To further examine the developed
spatial forecast verification methodology, the forecast performance of
two reanalyzed systems, namely ERA5 and MERRA-2, is subsequently
compared. The results indicate that, in comparison to MERRA-2, ERA5
exhibits superior forecasting performance. This conclusion is consistent
with the actual forecasting situations depicted in the visualization
images for the two reanalysis systems. The application of the automatic
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threshold segmentation method based on the three-component skew-
normal mixtures model results in a more rational threshold allocation,
effectively avoiding subjective threshold selection or extensive com-
putations to determine suitable threshold intensities. Simultaneously,
it prevents the overestimation of forecasting skills resulting from the
subjective choice of excessively low thresholds or the underestima-
tion of forecasting skills associated with the subjective selection of
excessively high thresholds. Additionally, to facilitate the practical
application of the proposed neighborhood-based spatial forecast ver-
ification method, all parameter fitting processes can be encapsulated
into a system program, requiring users only the input of the irradiance
data to be verified and relevant parameters. The threshold is auto-
matically computed by the automatic threshold segmentation method,
thereby obviating the necessity for users to locally modify threshold
parameters. The neighborhood scale used for spatial smoothing is
determined based on the specific application. Typically, for irradiance
data with the same high spatial resolution, a generic neighborhood
scale value can be chosen. This technological approach makes it easier
to construct a unified framework structure, facilitating the comparison
of forecasting performance across a large number of forecast datasets.
As such, the neighborhood-based spatial forecast verification becomes
more reasonable and widely applicable.

Besides, neighborhood-based spatial forecast verification can also
be used to monitor the monthly or quarterly forecasting performance
in specific regions and evaluate the degree of forecasting performance
improvement after upgrading forecasting models. Related topics could
be a focal point for future exploration. Moreover, in view of the recent
hype in machine-learning-based weather forecasting, which moves be-
yond training at a single location, but rather over an area. It should
be highlighted that the recent advances in machine-learning-based
weather forecasting provide important future applications for the pro-
posal verification method. Unlike traditional machine-learning meth-
ods, which train the models with just local data, the recent deep-
learning models almost always leverage areal data. In that sense, the
present verification metric can be used as the loss function during such
training, though such an avenue is not part of this work.
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